5. Retrieve the outside strings from the most confident
insides and train the outside classifier.
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Right Branching (RB) 39.5 58.5

« The process of annotation of syntactic trees by human
Unsupervised Parsing approaches:

language experts is often associated with high-costs and

o . . PRPN' (Shen et al., 2018) 374 381 584 @ -
1S time-1ntensive. URNNG* (Kim et al., 2019b) - 454 @ - -
- - - T (Shen et al., 2019) 4777 494 639 -
e Lack of clear annotation rubrics for certain low-resource ON™( ’

Tree Transformer™ (Wang et al., 2019) 50.5 520 66.2 —
languages. Neural PCFG' (Kim et al., 2019a) 50.8 526 646 -
: 3F _~f : DIORA* (Drozdov et al., 2019) — 589 60.5 —
« Annotations lack ability to scale to out-of-domain data. Compound PCFG' (Kim ot al., 20195) 5o 601 705
S-DIORA ™ (Drozdov et al., 2020) 576 640 71.8 -
Constituency Test* (Cao et al., 2020) 62.8 659 68.1 —
Proposed Approach Ours* (using inside) 559 572 662 -
Ours™ (using inside w/ self-training) 614 642 71.7 =
Ours™ (using inside and outside w/ co-training) 63.1 66.8 74.2 —

« We formulate the task of identifying constituents and Oracle Binary Trees 84.3 82.1

distituents (referring to spans that are not constituents)
in a sentence as a binary classification task by devising a
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seed bootstrapping Strategy to convert the unlabeled
data into a classification task.

« We build a sequence classification model by fine-tuning a Model . CTBM
can ax
Transformer-based PLM on the unlabeled training T
sentences to distinguish between the true and false Loft Branching (LB) 57
inside strings of constituents. Random Trees 157 16.0
. . . Right Branching (RB 20.0
« We use the highly-confident inside strings to produce the & g (RB)
] Unsupervised Parsing approaches:
outside Strings.
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i.e.,, self-training and co-training, we jointly use both lge“ral chgc(lf%nzg ;11233192*319&) gg'g gg'g
o . . . ompoun . : :
the inside and outside passes to enrich the model’s ability Ours (using inside) 378  38.4
Ours (using inside w/ self-training) 40.6 41.7

to determine the breakpomts In a sentence. Ours (using inside and outside w/ co-training) 41.8 43.3
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ompute the span scores |
inside and outside models. Train|(IV) l Tainj(v) Unsupervised Parsing approaches:
e oy ate the amie Extract the inside sFrings
T fom the most conficen PRPN (Shen et al., 2018) 272 318 301 33.6
I URNNG (Kim et al., 2019b) 10 102 227 227
' L romemostcontdent —— DIORA (Drozdov et al., 2019) 249 260 423 433
(S (S (S the) (S boy)) (S (S ate) (S (S the) (S apple)))) v !
"""""""" Cotrain 2 timas T DIORA-all (Hong et al., 2020) 364 400 47.1 489
Ours (using inside) 337 363 538 559
Ours (using inside w/ self-training) 376 398 555 58.2
We perform the self-training procedure for five iterations Ours (using inside and outside w/ co-training) 39.2 411 56.7 59.1
Upper Bound 76.5 76.6

which follow multiple steps:

1. Fine-tune a RoBERTa (base) model (teacher) on a KCY Findings
downstream task using a cross-entropy loss after seed
bootstrapping.

e Our parser has the ability to generalize to languages of
2. Synthetically annotate this data using the teacher model P y 195 e

. known branching direction (left/right) and achieves new
and select top K samples corresponding to each class to

form the final synthetic dataset; We fine-tune a RoBERTa
(base) model (student) on this dataset using hard labels

state-of-the-art-results on three treebanks comprising
both right- and left-branching languages.

« The use of inside and outside strings (inspired by the

and retrieve the outside strings from the most confident , . ,
notion of inside and outside trees for the spectral

insides.

. , , , , learning of latent-variable PCFGs) is a crucial component
3. Train the outside classifier on these outside strings; We

in our pipeline.
perform the co-training procedure for two iterations p. P , , , ,
« Employing semi-supervised learning techniques to model

which follow a two-fold optimizing step. . . .. . .
P & StEPp interactions between the inside and outside classifiers

4. Retrieve the inside strings from the most confident , , ,
results in an overall improved parsing performance.

outsides and train the inside classifier.
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