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Unsupervised Constituency Parsing

Parse Tree

The quick brown fox jumps over the lazy dog

Sentence
. The quick brown fox Jumps over the lazy dog
> Parsing 1
The quick brown fox jumps over the lazy dog ——>
Framework
The quick brown fox  jumps over the lazy dog
over the lazy dog

the lazy dog

Goal: Induce parse frees from observed sentences alone without supervision



Motivation
* Current supervised parsers operate on a minuscule of commonly spoken languages in the
world.

* The process of annotation of syntactic trees by human language experts is often associated
with high-costs and is time-intensive.

* Lack of clear annotation rubrics for certain low-resource languages.

* Annotations lack ability to scale to out-of-domain data.



Previous Approaches

* Generative: Models the joint probability distribution P(x, z) over sentence x and parse tree z
through a grammar component.

> Constituent Context Model (CCM) «licin and Manning (2002)

> Parsing-Reading Predict Network (PRPN) shen et al. (2018b)

> Ordered Neurons (ON) shen et al. (2019)

> Unsupervised Recurrent Neural Network Grammars (URNNG) kim et al. (2019b)

* Discriminative: Models the conditional probability P(z | x) of the output parse tree z conditioned
on the sentence x.

> Deep Inside-Outside Recursive Autoencoders (DIORA) prozdov et al. (2019)
> Compound PCFG «kim et al. (2019)

> S-DIORA Drozdov et al. (2020)
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Datasets

* Penn Treebank (PTB)

Nissan hopes that that will start to change this fall , with
its new version of the Stanza compact sedan .

* Chinese Treebank (CTB)
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* Keyaki Treebank (KTB)
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Weak Supervision

* Branching Direction

Data ' Branching

' Mostly Right
T8 ' Mixed

Mostly Left

* Rule-based Heuristics




Inside and Outside Strings

Sentence
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Span=4 words
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Whole-sentence span

Inside string

Outside string

The quick

quick brown

The quick brown

quick brown fox

The quick brown fox

quick brown fox jumps

<BOS>, <MASK>, brown

The, <MASK>, fox

<BOS>, <MASK>, fox

The, <MASK>, jumps

<BOS>, <MASK>, jumps

The, <MASK>, over

<BOS>, <MASK>, <EOS>



Implementation: Seed Bootstrapping

Unlabeled Seed

Sentences Bootstrap



Implementation: Seed Bootstrapping

Unlabeled Seed
Sentences Bootstrap

Pseudo Constituents

Intuition
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Implementation: Seed Bootstrapping

Unlabeled
Sentences

B ——

Seed
Bootstrap

~

—

Right Branching : (start: end), ..., (start: end - 6)
Left Branching : (start + 1: end), ..., (start + 4: end)
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Implementation: Inside String with Self-training

Self-train 5 times

Teacher Model Student Model

Train () Label | cabel Extract the outside strings
> Transformer ! Transformer .y corresponding to the inside strings
T 1 ] & 1 1 1% 5 I after the self-training procedure
Transformer | Transformer E
Create | . :
Synthetic ] Train (1) !
Labels |

Select a random sample of 'c' pseudo-constituents
|y and 'd' pseudo-distituents from the most confident
inside strings to form the synthentically prepared
dataset

Fine-tune a RoBERTa (base) model (teacher) on a downstream task using a

Step I cross-entropy loss after seed bootstrapping

Synthetically annotate this data using the teacher model and select top 'K' samples corresponding to each class
Step II to form the final synthetic dataset; We fine-tune a RoBERTa (base) model (student) on this dataset
using hard labels and retrieve the outside strings from the most confident insides
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Implementation: Inside-Outside Strings with Co-training

S’rep IV LatE,I(:side Model LapZUtSide Model
i __ Transformer __ Transformer - Train (I11)
Retrieve the inside s’rrings from the most confident outsides é _ Transformer _ Transformer
and train the inside classifier '
TrainT(lV) l TrainA(V)
; Extract the inside strings
S.l.ep v i grggigl(;esmgztsconﬁdent
Refrieve the outside strings from the most confident insides [ from the most confident. ——

inside strings

and train the outside classifier
Co-train 2 ti
Oo-traln imes S"‘ep III

Train the outside classifier on these outside strings; We perform the co-training procedure for
two iterations which follow a two-fold optimizing step



Implementation: Parsing Algorithm

Inside Model Outside Model
Label Label
Train (11
Transformer Transformer 4: (1
Transformer Transformer

Compute the span scores !
based on the final co-trained €«———

A
inside and outside models . Tra'”T“V’ i Train|(V)

Extract the inside strings
from the most confident
outside strings

The boy ate the apple

Extract the outside strings
Ly from the most confident —
inside strings

(S (S (S the) (S boy)) (S (S ate) (S (S the) (S apple)))) Co-train 2 times

Viterbi form of the CYK algorithm to produce a globally optimized parse tree for each sentence




Results on the PTB test set
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Results on the PTB test set
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| Inside-Outside model with co-training results in +7.2 F1 improvement compared to the vanilla (inside) model
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Results on the PTB test set
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Results on the PTB test set
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Inside model with self-training results in +5.5 F1 improvement compared to the vanilla (inside) model
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Results on the PTB test set
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Results on the CTB test set
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, Inside-Outside model with co-training results in +4 F1 improvement compared to the vanilla (inside) model f,
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Results on the KTB test set
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Conclusions

* Our parser has the ability to generalize to languages of known branching direction (left/right)
and achieves new state-of-the-art results on three treebanks comprising both right- and left-
branching languages.

* The use of inside and outside strings (inspired by the notion of inside and outside trees for
the spectral learning of latent-variable PCFGs) is a crucial component in our pipeline.

* Employing semi-supervised learning fechniques, i.e., self-training and co-training, to model
interactions between the inside and outside classifiers results in an overall improved parsing
performance.
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Resources

* Code: https://github.com/Nickil21/weakly-supervised-parsing
* Models: https://huggingface.co/nickil/weakly-supervised-parsing
* Demo: https://huggingface.co/spaces/nickil /weakly-supervised-parsing

* Contact: https://nickilmaveli.com
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