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Abstract

We develop a method for unsupervised parsing that depends on bootstrapping classifiers:

an inside classifier that operates on a span, and an outside classifier that operates on

everything excluding the given span, to determine if a node dominates a specific span

in a sentence. To effectively learn the 2-way interactions between these classifiers, we

subject the two classifiers through self-training and co-training procedures that help

the parser adeptly capture the span boundaries of likely constituents and distituents in

a sentence. In addition, through the paradigm of weak supervision, we inject a strong

inductive bias into our parser primarily based on two modes of supervision: (1) prior

branching knowledge of a known language (left/right-branching) to train these classifiers

using a novel seed bootstrapping technique, and (2) rule-based heuristics, to achieve

63.1 F1 on the English (PTB) test set. Furthermore, we demonstrate the generalization

capabilities of our parsing framework by evaluating on treebanks for Chinese (CTB) and

Japanese (KTB) using simply mode (1) as weak supervision to set new state-of-the-art

results. Our code is available at https://github.com/nickil21/weakly-supervised-parsing.
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Chapter 1

Introduction

Human beings communicate using language in the form of a sequence of words canon-

ically vocalized as speech. They typically learn by observing their surroundings and

innately acquire language properties, such as the acquisition of word meaning, phonol-

ogy, morphology, and even syntax. Figure 1.1 shows the parse diagram under a set of

conventions for the sentence, The boy who was sitting at the edge of his chair fell down,

which is reasonably straightforward for most humans to understand; however, it is

challenging for many Natural Language Understanding (NLU) systems to comprehend

successfully, such as, to construe additional links (coreference between mentions) and

the underlying relationship between different words in the sentence. However, in the

field of Natural Language Processing (NLP), human language experts create syntacti-

cally annotated sentences to primarily tackle the problem of structure induction using

constituency parsing. Parse trees (resulting from parsing) have found their usage as an

intermediate representation in several downstream applications:

• Named Entity Recognition: To identify the named entities in the sentence, were

allies of the European Football Union with ties to John Doe, the parser, after

correctly identifying the phrase European Football Union in the constituency tree

can use the surrounding context to infer that it belongs to an organization and not

a person (Finkel and Manning, 2009).

• Machine Translation: To translate a sentence from a source to a target language,

the operations on the intermediate parse trees can help learn specific productions

of grammar and word-order variations to reconstruct the parse of the target

language (Wu and Wong, 1998).

• Speech Recognition: To recognize the transcription, place the card in the drawer

1
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S
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NP

NN
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Figure 1.1: A sample parse tree representation. A listener must comprehend the situation

in which the chair modifies the boy in a relative clause and decipher that the boy has

fallen rather than the linearly proximate chair.

and give a higher probability (based on every joint sequence of words) than a less

likely transcription place the card and the drawer (Chelba and Jelinek, 1998).

• Question Answering: To answer the question: Which trains to Edinburgh arrive

before the Manchester train?, there is a need first to understand that the ques-

tioner wants a list of trains going to Edinburgh, not trains going to Manchester.

Subsequently, the parse structure (knowing that to Edinburgh modifies trains and

which trains to Edinburgh is the subject of the arrival) can help us (Shen et al.,

2005).

Parsing, although having a myriad of practical uses, is not an unchallenging task. A

common problem a syntactic parser faces is structural ambiguity, which occurs when

the grammar tends to assign multiple parses to a sentence. Two common forms of

ambiguity are attachment ambiguity (attach a constituent to the parse tree at more than

one place) and coordination ambiguity (conjoining of a phrase by conjunction). Typical
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Watching    a    model    train Watching    a    model    train 

Figure 1.2: Two parse trees for a sentence having structural ambiguity that requires

context to resolve where only one of the readings is plausible, and it is the parser’s

job to determine which one. The parse on the left corresponds to the reading in

which model train (noun) refers to the toy train. The parse on the right corresponds

to the reading in which model train denotes the model artifact, common in the ma-

chine learning terminology, subjected to a training process (verb). Image courtesy:

https://twitter.com/wluper_/status/1133725988368637953.

ambiguities originating from coordination, relative clause attachment, PP attachment,

etc., can result in alternative possibilities which tend to multiply when chained together.

Figure 1.2 illustrates a scenario that is impossible to disambiguate for both humans

and machines without additional contextual information. At times, it can also involve

factors such as the possession of world knowledge and general reasoning capabilities

which makes disambiguation much harder.

1.1 Motivation

While an effective solution, parsing does not provide a sound intuition about how

children would address the phenomenon of inducing structure from observed data

alone. Recently, substantial progress has been achieved in the field of unsupervised

parsing, i.e., inducing parse tree structures from observed sentences alone without

supervision. Consequently, there is a strong desire to study unsupervised parsing.

Although constituency parsing has been an integral part of nearly every NLP system, yet

the current supervised parsers only operate on the commonly spoken languages and are

incapable of generalizing to out-of-domain data. In addition, the annotation of syntactic

https://twitter.com/wluper_/status/1133725988368637953
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tree structures by human language experts is both expensive and time-consuming. At

times, in the case of low-resource languages, no proper annotation scheme is available.

Hence, the study of unsupervised parsing and grammar induction is an important

endeavor in the right direction. From a scientific standpoint, success in this field can

bring machines closer to the reasoning of how children process textual information

to infer syntactic knowledge. Furthermore, from a psycho-linguistic standpoint, the

advancements in unsupervised parsing and grammar induction can have a pivotal

role to play in supplementing empirical evidence against innate linguistic theories

and arguments such as poverty of the stimulus (Chomsky et al., 2006) and universal

grammar hypothesis (White, 1990).

In this thesis, we focus on the task of unsupervised constituency parsing. Broadly,

we pose the problem of identifying the constituents, i.e., spans (including single-word

and multi-word) that function as a single unit, and distituents, i.e., spans that do not

belong to constituents, in a sentence as a binary classification task. First, we devise a

procedure to convert the unlabeled sentences into a sequence classification task and

then train a model by fine-tuning a transformer-based pre-trained language model on

the unlabeled sentences to differentiate between the true and false inside strings of the

pseudo-constituents. Later, we utilize the highly-confident inside strings to generate

the outside strings. Finally, using self-training and co-training approaches, we learn

by optimizing and integrating both the inside and outside string passes to enhance the

model’s ability to recognize the breakpoints in a sentence. Our best parser attains 63.1

sentence F1 averaged over multiple runs with random seed on the Penn Treebank (PTB)

test set using the branching knowledge and minimal heuristics acting as weaker forms

of supervision. In addition, we report strong results on the test sets for the Japanese

Treebank (KTB) as well as the Chinese Treebank (CTB).

1.2 Thesis Outline

In Chapter 2, we commence by providing an outline of the history and recent devel-

opments in the field of unsupervised parsing. Next, we formally delineate the

problem formulation and describe different evaluation methods. Later, we state

the possible utilization of few shot parsing as a middle-ground between fully

unsupervised and supervised systems. We then argue the need to follow a set

of universal conventions while designing parsers. Lastly, we briefly discuss the

distinction between unsupervised parsing and grammar induction.
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In Chapter 3, we introduce our neural unsupervised parsing framework and describe

its training algorithm, fundamentally having three stages in an increasing order

of complexity: learning using the inside strings; learning using the inside and

outside strings; and a joint co-training based model training. Lastly, we describe

the inference algorithm to extract the maximum scoring parse tree.

In Chapter 4, we discuss the implementation of our multi-view learning strategy. In

particular, we elucidate the seed bootstrapping process to pose the challenge

of inducing syntactic structures as a supervised classification task guided by

pseudo-labels. Additionally, we outline the benefit of adding heuristics to the

overall system to achieve higher gains. Lastly, we explain the training procedure

behind the inside string, outside string, and the joint inside and outside strings.

In Chapter 5, we present our experimental results on treebanks for languages of differ-

ent branching tendencies. We show strong results on right-branching languages

such as English (PTB) and Chinese (CTB), as well as left-branching languages

such as Japanese (KTB). Furthermore, we conduct linguistic error analysis to

identify some of the more frequent errors made by the parser and provide linguis-

tically motivated explanations. Lastly, we wrap up with a discussion about some

of the limitations of our approach.

We will finally conclude in Chapter 6 as well as suggest potential directions for

future work.

1.3 Contributions

The contributions of this thesis are summarized as follows:

• We devise a strategy to pose the unsupervised learning as a synthetically created

sequence classification task that can generalize to any language parameterize by

the direction of branching (left/right) using weak supervision.

• We set the groundwork for the research direction of employing semi-supervised

learning techniques, i.e., self-training and co-training, as a core component

of unsupervised parsing to model interactions between the inside and outside

classifiers.
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• We make an effort to identify common parsing errors and propose further correc-

tive strategies to address these errors. Finally, our approach sets a new state-of-the-

art result on three treebanks comprising both right-branching and left-branching

languages.



Chapter 2

Background

In this chapter, we aim to provide the readers with an overview of unsupervised parsing.

First, we describe some of the early works, to the more recent resurgence of neural

network-based (deep learning) approaches in Section 2.1. We then formally define the

unsupervised parsing task under both generative as well as discriminative settings in

Section 2.2 and describe the evaluation metrics that typically previous works have used

for this task. Later, we suggest a better alternative to perform training in the few-shot

learning setting (Section 2.3).1 We next argue for the strong requirement of following

a standard protocol for all unsupervised parsers to make meaningful evaluations and

improve model explainability from a futuristic perspective (Section 2.4). Finally, we

explain in Section 2.5, that unsupervised parsing and grammar induction, although

closely related to one another, are not synonymous.

2.1 History

In this section, we review a series of previous approaches to address the problem of

unsupervised parsing — ranging from the early usage of statistical methods to the more

recent employment of neural network-based methods.

2.1.1 Early Approaches

In the early 1990s, much effort had been spent on inducing probabilistic context-free

grammars (PCFGs) via the Expectation-Maximization (EM) algorithm (Lari and Young,

1Few-shot learning learns models given only a few labeled examples.

7
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1990; Carroll and Charniak, 1992).2 During this time, the conventional wisdom pointed

towards EM not being suitable for inducing tree structures as it produced unsatisfactory

results. The Constituent-Context Model (CCM) of Klein and Manning (2002) assigned

scores to each parse as a product of span probabilities and its contextual subsequences.

It was the first model that outperformed the right-branching baseline, however, only

unpunctuated sentences of sentence length upto 10 were considered during evaluation.

In particular, the CCM model of Klein and Manning (2002) was the backbone for much

subsequent works (Klein and Manning, 2004; Huang et al., 2012; Golland et al., 2012).

A non-parametric model was suggested by Bod (2006) known as Unsupervised

Data-Oriented Parsing (UDOP) which used a large random subset of subtrees from

all possible binary trees to estimate the most likely parse. Seginer (2007) adopted an

incremental and a (locally) greedy parsing strategy which used a new link representation

to create constituents. Ponvert et al. (2011) combined finite-state models in a cascaded

fashion to produce constituent structures.

Few models exploited the availability of parallel corpora in multiple resource rich

languages to perform unsupervised POS induction (Cohen et al., 2011; Das and Petrov,

2011). Parikh et al. (2014) proposed a spectral learning algorithm based on additive

tree metrics and achieved improved results compared to the CCM model (Klein and

Manning, 2002) on longer sentences (length > 10) without much initialization.

2.1.2 Neural Network based: The Deep Learning Era

Over the last couple of years, the resurgence of deep learning has significantly changed

the landscape of unsupervised parsing. In comparison to the traditional, statistical, and

hand-designed feature-based models, the neural models have shown to be effective in

learning rich linguistic structures capable of outperforming the previously established

benchmarks by a substantial margin. Applications employing neural networks often re-

quire less expert analysis and fine-tuning since they are trained rather than programmed.

Moreover, they can exploit the tremendous amount of textual data widely available and

can be re-trained using a custom dataset in contrast to traditional systems which tend

to be more domain-specific. Numerous approaches have been proposed using neural

networks which showed promising results on latent tree induction directly from words.

2In this approach, the grammar structure is fixed and only parameters are induced depending on the
inclusion or exclusion of rule-based queries.
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2.1.2.1 Recurrent Neural Network based Approaches

By injecting inductive bias into the recurrent neural network (RNN), Parsing-Reading-

Predict Network (PRPN) model proposed by Shen et al. (2018b) attempted to induce

trees by solving a language modeling task. The parsing network computed the syntactic

distance (Shen et al., 2018a) to make soft constituent decisions. The previous state was

composed using self-attention and the attention range was regulated by the syntactic

distance, which was equivalent to the depth of the tree. In a follow up work, Shen et al.

(2019) proposed ordered neurons LSTM (ON-LSTM) model to induce a hierarchy in

the representation units that used a combination of gating mechanism and an activation

function to recursively find breakpoints based on each neuron’s updates and all the

neurons that follow it sequentially. The early successful works on unsupervised parsing,

for instance, conducted by Klein and Manning (2002), enforced strong conditional

independence assumptions that enabled the model to discover desirable tree structures,

but it came at the expense of language modeling performance. A new set of generative

models, recurrent neural network grammars (RNNG) model (Dyer et al., 2016) made

no independence assumptions. Instead, an RNN model encoded structural bias via shift

and reduce operations after learning the joint distribution over sentences and parse trees.

Even though the language modeling capabilities were improved substantially as a result

of no independence assumption, the grammar induction abilities were not promising. To

overcome this challenge, the unsupervised RNNG (URNNG) model introduced by Kim

et al. (2019b) employed parameterized function over latent trees to handle intractable

marginalization and injected strong inductive biases for the unsupervised learning of the

RNNG model. A hybrid model, Parser and Language Model (PaLM; Peng et al. 2019)

consisted of a RNN language model with a constituency parser that learned syntactical

information implicitly using attention mechanisms over the spans of tokens to create a

span-based parser from the attention weights.

2.1.2.2 PCFG with Neural Parameterization

Recent work (Jin et al., 2018a,b, 2019; Kim et al., 2019a; Zhu et al., 2020), showed

that inducing PCFGs from raw text is possible if it used neural parameterization, i.e.,

utilizing neural networks to produce the rule probabilities. For instance, Jin et al.

(2019) showed that a regularized PCFG inducer with a normalizing flow model (Dinh

et al., 2015) could produce meaningful tree structures if it used contextual embeddings.

Compound PCFG (Kim et al., 2019a) utilized neural networks to parameterize the
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PCFG’s rule probabilities and found that the neural PCFG is capable of inducing trees

using maximum likelihood estimation. The work of Kim et al. (2019a) is related to some

degree of extending PCFGs to the latent variable setting (Matsuzaki et al., 2005; Petrov

et al., 2006; Cohen et al., 2012). However, these approaches had relied on annotated

treebanks for learning supervised parsers. To induce both constituents and dependencies

within a single model, Zhu et al. (2020) proposed neural lexicalized PCFGs (L-PCFGs)

that ameliorated the data sparsity problem through parameter sharing. To reduce the

computational complexity from cubic to quadratic, Yang et al. (2021) extended PCFG

based on tensor decomposition.

2.1.2.3 Leveraging Transformer Models

More recently, Pre-trained Language Models (PLMs) have shown tremendous success

in learning universal language representations from large-scale raw texts, which are

beneficial for downstream NLP tasks (Radford et al., 2019; Devlin et al., 2019; Dong

et al., 2019). One such deep and powerful architecture is the Transformer (Vaswani

et al., 2017). To comprehend language hierarchically, Wang et al. (2019) proposed Tree

Transformer, which improved the interpretability of the attention heads of transformer

encoder capable of inducing tree structures guided by a self-attention module. In

another study, Kim et al. (2020) extracted trees from pre-trained transformers without

training and found that the attention heads exhibited syntactic structure that resembled

constituency grammar. Li et al. (2020a) built a purely unsupervised parser using attention

heads of transformers that do no rely on the development set. Shen et al. (2021) proposed

StructFormer model, that introduced strong inductive bias to enable transformers to

perform unsupervised dependency and constituency parsing at once.

2.1.2.4 Guiding by Weak Supervision

The main idea surrounding weak supervision is the application of labelling functions

(such as linguistic constraints, gazetteers, external databases, etc.) as an alternative

to the gold-standard annotations. To induce syntactic structures from BERT-based

models using distant supervision data, Shi et al. (2021) extracted naturally-occurring

bracketings such as answer fragments and webpage hyperlinks. Their analysis re-

asserted Spitkovsky et al.’s (2010) findings that a significant portion of HTML markups

do conform to constituents. Based on the weak supervision inferred from the lin-

guistic notion of constituency tests and further refinement of the transformer model’s
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grammaticality judgments, Cao et al. (2020) were able to achieve strong results.

2.1.2.5 Combining Autoencoders with the Inside-outside Algorithm

The goal of standard autoencoders is to map a sentence to lower-dimensional represen-

tation (encoding), which is an intermediate stage, and then reconstruct the observed

sentence from the decompressed intermediate representation (decoding). The Deep

Inside-Outside Recursive Autoencoder (DIORA) of Drozdov et al. (2019) incorporated

the inside-outside algorithm (Baker, 1979), and with the help of latent tree chart parsers,

trained to predict each word from its surrounding context. During the bottom-up inside

pass, the inside representations corresponding to each span of the input sentence was

responsible in encoding only the current subtree. Whereas, during the top-down outside

pass, the outside representations was responsible in encoding the context of a given

subtree. To recover from local errors of DIORA, (Drozdov et al., 2020) proposed an

improved variant, S-DIORA with majorly two modifications. The first modification was

to replace DIORA’s weights by performing a hard argmax operation to encode a single

tree and thereby eliminating the vector averaging altogether. The second modification

was to add a beam at each cell in the chart to mitigate the effect of local errors arising

when using the context-free approach of the inside-outside algorithm. Since DIORA’s

training objective used only leaf-level spans, Hong et al. (2020) experimented with

all-level spans training objective function and found better performance.

2.1.2.6 Reinforcement Learning through Downstream Tasks

Some approaches used reinforcement learning to induce syntactic structures using

reward functions defined by downstream tasks. Yogatama et al. (2017) utilized rein-

forcement learning and took the performance on a downstream task as the reward

signal to induce tree structures. Choi et al. (2018) proposed Gumbel Tree-LSTM that

learned to compose tree structures from raw sentences. To combine the continuous

PRPN (Shen et al., 2018b) with a Tree-LSTM model (Tai et al., 2015) having discrete

parsing abilities, Li et al. (2019) adopted an imitation learning framework.

2.1.3 Multi-Modal Grammar Induction

The approaches mentioned in Section 2.1.1 as well as Section 2.1.2 were generally

limited to relying only on textual elements and do not consider signals from other

modalities of data. In this section, we offer methods aimed to induce syntactical
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structures aided by its visual context. In this regard, Shi et al. (2019) proposed Visually

Grounded Neural Syntax Learner (VG-NSL) that learned a parser by looking at natural

images and reading aligned captions. They assumed that similar spans of phrases,

for instance, verb or prepositional phrases, could be mapped to similar visual objects

and these concrete spans in itself should act as constituents. Although it was able to

accurately model the phrase structure syntax, it was observed that the parser focused

more on shorter constituents such as Noun Phrases and performed poorly on longer ones

such as Verb Phrases when compared to text-only parsing approaches. To overcome this

drawback, Zhao and Titov (2020) introduced a fully-differentiable end-to-end visually

grounded learning framework which was optimized through a language modeling

objective by extending the Compound PCFG (Kim et al., 2019a) model. In another

study, Kojima et al. (2020) constructed simpler model variants of the VG-NSL (Shi

et al., 2019) and identified key components to reduce the expressivity of the model.

Contrary to what was expected, they found that the less expressive variants performed

equally or sometimes even better in comparison to the original VG-NSL model. In the

same vein, Jin and Schuler (2020) incorporated visual information from images and

achieved strong performance on multilingual induction datasets without any additional

encoded information. Since images are static and lacked dynamic information about

visual elements, Zhang et al. (2021) investigated video-aided grammar induction by

leveraging aligned video-sentence pairs and noticed that their model was able to learn

linguistic phenomena for verb related features effectively.

2.2 Task Definition

2.2.1 Problem Formulation

We first formally describe the task. Let the inputs be a sentence x = {x1,x2, . . . ,xT},
where T is its length in words, which will induce an unobserved structure z ∈ ZT

(e.g. parse tree, part-of-speech sequence) over a sequence of length T . We compare

generative and discriminative unsupervised structure learning models. In the generative

learning setting, the models are optimized to maximize the log marginal likelihood

over sentences and the parse trees: log p(x) = log∑z∈ZT p(x,z). Whereas, in the

discriminative learning setting, the models are optimized to maximize the conditional

probability of the parse trees given the sentences: ∑z∈ZT log p(z | x).
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2.2.2 Evaluation

Setting up a right evaluation framework towards unsupervised parsing is challenging

as the linguistically motivated gold-standard trees could have syntactic analysis for

syntactic constructions which is questionable. However, it has the notable advantage of

providing hard empirical quantitative information and is, therefore, one of the better-

known ways of evaluating trees. As opposed to supervised parsing, unsupervised parsers

do not actually label the brackets in the tree since there is no way to match the induced

symbols to the gold symbols using some correspondence linking. As a result, we only

measure the unlabeled brackets. We can then define the following metrics:

• True Positives (TP) are the spans present in both predicted and gold-standard

parse tree.

• True Negatives (TN) are the spans not present in both predicted and gold-

standard parse tree.

• False Positives (FP) are the spans present in the predicted but not present in the

gold-standard parse tree.

• False Negatives (FN) are the spans present in the gold-standard but not present

in the predicted parse tree.

The standard formula for Precision, which is a proxy for the percentage of predicted

constituents that are correct, can be written as:

Precision =
True Positives

True Positives+False Positives
.

The standard formula for Recall, which is a proxy for the percentage of gold constituents

that are predicted, can be written as:

Recall =
True Positives

True Positives+False Negatives
.

As a unification of these two quantities, we also report the unlabeled F1, their harmonic

mean:

F1 =
2×Precision×Recall

Precision+Recall
.

However, there are two ways of averaging F1 scores over multiple unseen test

sentences, i.e., micro and macro average. In micro average (i.e., corpus-level score), we
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aggregate all the span predictions at a corpus level and compare them with gold-standard

spans to get the TP, FP, and FN values. Later, we compute the Precision and Recall and

finally the resulting F1 score. On the other hand, in macro average (i.e., sentence-level

score), we compute the F1 score at a sentence level (incorporating all its spans) and

then average it over all the test sentences.

In addition, we make use of the standard PARSEVAL metrics (Black et al., 1991)

whose canonical implementation is implemented by EVALB.3 There does exist a slight

difference in the way the F1 score is calculated in relation to the standard and EVALB

approaches. In the former case, we typically remove trivial (single-word and whole-

sentence) spans and count duplicate spans (resulting from unary production) only once.

Whereas, in the latter case, we do take into consideration the whole-sentence spans as

well as the duplicated spans and do not discard them. Our experiments use the evalb

parameters as shown in Table 2.1.

DEBUG 0

MAX_ERROR 1

CUTOFF_LEN 10

LABELED 0

DELETE_LABEL_FOR_LENGTH -NONE-

EQ_LABEL ADVP PRT

Table 2.1: The hyperparameters used for evalb

.

To estimate the perplexity of a language model used for unsupervised parsing more

holistically, we perform syntactic evaluation by evaluating the grammaticality of the

predictions (Marvin and Linzen, 2018); the model is given minimally different pairs

of sentences, one grammatical and one ungrammatical, and must, in theory, expect to

assign a higher probability score to the grammatical sentence. For e.g.:

The bankers embarrassed themselves.

*The bankers embarrassed herself.

In the above minimal pair, the last sentence is ungrammatical because the reflexive

pronoun (herself) needs to agree in number (and gender) with its antecedent.

To determine if the unsupervised parsers can generalize well on both short and

long sentences, we generally divide the test sentences into two sets: sentences having
3https://nlp.cs.nyu.edu/evalb/

https://nlp.cs.nyu.edu/evalb/
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length ≤ 10 (WSJ-10) and all sentences (WSJ-Full). We mainly follow the guidelines

delineated by Li et al. (2020b). We report scores on both these sets. In order to avoid

overfitting to a particular random seed, it is preferred to report mean and standard

deviation based on multiple random seeds or restarts. In addition, a lot of previous

work which recursively split larger constituents into smaller ones based on the notion

of syntactic distance (Shen et al., 2018b, 2019; Htut et al., 2018; Li et al., 2019; Shi

et al., 2019) have shown a marked bias for outputting right-branching structures, thereby

inflating parsing performance on right-branching languages such as English (Dyer et al.,

2019). Consequently, it is recommended to perform evaluation on treebanks of both

right-branching and left-branching languages, such as the CTB and KTB respectively,

in addition to the default, PTB.

2.3 Few-Shot Parsing: A Better Alternative

Recently proposed neural unsupervised parsing approaches consider the gold parse

trees in the development set for either early stopping (Shen et al., 2018b, 2019; Drozdov

et al., 2019, 2020) or hyperparameter tuning (Kim et al., 2019a). Based on a study

conducted by Shi et al. (2020), they found that the size of the labeled samples used

for tuning is indeed responsible for the strong performance as opposed to the fully

unsupervised criteria. To be specific, about 15 labeled samples are sufficiently capable

of achieving a comparable performance as those tuned on 1700 labeled samples. This

study suggests we need far fewer labeled examples compared to what is being used in

the current literature. It was found that training a supervised parser model (Kitaev and

Klein, 2018) on these labeled samples gives substantial improvements. For instance,

in their analysis, ON-LSTM (Shen et al., 2019) model showed 12.5 F1 points gain

compared to using fully unsupervised criteria. Consequently, Few-shot constituency

parsing, which involves training a supervised constituency parser on limited examples

can be a better substitute than using these few examples for model development and

tuning.

An alternate option seeking a purely unsupervised solution can be to perform

hyperparameter tuning with metrics such as Perplexity, Entropy, Kullback-Leibler (KL)

divergence, etc., not based on gold parses. In the case of a multilingual setting, we

can fix the best-found hyperparameter values for one language and evaluate on other

languages to see the generalization capabilities.
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2.4 Datasets and Models

One of the major challenges involved in assessing the true performance of a parser is

the lack of a fixed set of protocols needed to be followed during the experimentation

phase. Firstly, a lot of previous studies (Kim et al., 2019a; Shen et al., 2018b) collapse

the low frequency word tokens to a single form which may be desirable in chaining the

words together in a cluster to get substantial improvements (Shi et al., 2020). Hence, it

is advisable to have a fixed vocabulary size across all models to have a fair comparison.

Even reporting scores on incremental subsets of vocabulary size, i.e., 10K, 20K, etc.,

can be a good future step. Secondly, the use of additional datasets along with or without

the actual training set can lead to unfair comparisons. For instance, DIORA (Drozdov

et al., 2019) and S-DIORA (Drozdov et al., 2020) are trained on SNLI (Bowman et al.,

2015) and MNLI (Williams et al., 2018) datasets. URNNG (Kim et al., 2019b) is

trained on a portion of one billion words (Chelba et al., 2014). Thirdly, a lot of early

systems, such as the Constituent-Context Model (CCM; Klein and Manning 2002), the

Dependency Model with Valence (DMV; Klein and Manning 2005), and Unsupervised

Maximum Likelihood estimator for Data-Oriented Parsing (UML-DOP; Bod 2006)

are trained using POS tags which the recent neural-based approaches do not seem

to consider as they are instead trained using raw words. Furthermore, several early

approaches learn from training sentences of length ≤ 10, in contrast to the neural-based

approaches which usually do not put a length limit during training. Finally, a lot of

previous works which rely on transformer architectures (Wang et al., 2019; Cao et al.,

2020; Shi et al., 2021) are capable of capturing structural information about language

in their intermediate layers (Goldberg, 2019; Jawahar et al., 2019) and therefore it is

quite possible that the deep contextual models can encode parse trees in their word

representations to some extent. For this reason, it is unfair to compare model variants

especially as each one’s syntactic abilities are different. A future step could be to design

structural probes (Hewitt and Manning, 2019) to identify the amount of syntactical

information preserved in the language model’s word representation space before and

after training.

2.5 Unsupervised Parsing vs. Grammar Induction

A grammar can be regarded as the specification, set or rules necessary to construct some

meaning from a finite set of smaller components. Grammar Induction is the mechanism
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of learning a formal grammar, i.e., determining the set of (rewrite) rules or productions

and their associated probabilities from a set of sample sentences. Once learned, we

can use the induced grammar to parse a set of unseen sentences and compare the

predicted parse with the gold-standard parse to evaluate its capabilities on unsupervised

parsing (Jin et al., 2019; Kim et al., 2019a; Zhu et al., 2020). As a result, it is worth

mentioning that unsupervised parsing and grammar induction are different terms and

thus cannot be used interchangeably. In reality, it is possible to design an unsupervised

parser without actually learning the underlying grammar induced in a prior step (Klein

and Manning, 2002; Smith and Eisner, 2005; Bod, 2006; Seginer, 2007; Parikh et al.,

2014; Shen et al., 2018b, 2019; Drozdov et al., 2019, 2020; Cao et al., 2020).

In the rest of this thesis, we focus on the problem of unsupervised parsing while

learning no underlying formal grammar.



Chapter 3

Neural Unsupervised Parsing

Framework

In this chapter, we cover the essence of our framework: from the basic building blocks

of our training algorithm to the decoding step comprising of a dynamic programming-

based inference algorithm to perform a global search over the space of all valid parse

trees. Before diving deep into the inner workings of our system, we give a brief

introduction to several key concepts which serve as a backbone and play a crucial role

in building our system (Section 3.1). Furthermore, with increasing complexity, we

present three ways to bootstrap a score function that helps identify whether a node in

the parse tree should dominate a given span (Section 3.2). Finally, we describe the chart

parsing algorithm to extract the maximum scoring parse tree and compute its runtime

complexity in Section 3.3.

3.1 Preliminaries

In the subsequent sections, we delineate a minimal set of key components and core

concepts that form the basis of our parsing framework.

3.1.1 Semi-Supervised Learning

The first key idea is the use of a learning paradigm, semi-supervised learning (SSL),

which lies in between supervised and unsupervised learning that attempts to use both

labeled and unlabeled data to design models. Let X = {XL,XU} denote the training

dataset which includes a considerably small amount of labeled data set XL = {(xi,yi)}L
i=1

18
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Inputs: L: Labeled training set; U: Unlabeled training set; τ: Threshold for selection;

Algorithm:

Repeat (until no more predictions are confident):

Train a classifier m with training data L

Classify data in U with m

(for x ∈ U)

Find a subset U′ of U satisfying maxm(x)> τ

U′ = {(x, p(x))}
L← L+U′

U← U−U′

Output: Generated final classifier m based on the new training set.

Figure 3.1: The self-training algorithm.

along with its corresponding labels YL = (y1,y2, · · · ,yL) and a reasonably large amount

of unlabeled data set XU = {(xi)}U
i=1, and L� U. For a simple binary classification

task having 2 classes, the first L examples within X are labeled by {yi}L
i=1 ∈ (0,1).

Formally, SSL aims to minimize the classification error:

min
θ

∑
(x,y)∈XL

LS (x,y,θ)+α ∑
(x)∈XU

LU(x,θ)+β ∑
(x)∈X

R (x,θ), (3.1)

where LS denotes the supervised loss (cross-entropy loss), LU denotes the unsupervised

loss, and R denotes the regularization loss, for each training instance. Finally, θ refers

to the model parameters and α, β denote scalar hyperparameters.

3.1.1.1 Self-training

Self-training (Yarowsky, 1995; McClosky et al., 2006, 2008) (sometimes also referred to

as “self-learning”) is a technique that leverages the previously learned model’s prediction

on unlabeled data to train a model. The process repeats until no more unlabeled data

remain or we observe no significant improvement in the model performance on the

validation set. Given a set of labeled training set L and an unlabeled data set U, self-

training works as follows: At each iteration, we train a model m using L, and further

classify U with m which gives predictions m(x) formulated as a probability distribution

over all the classes in the dataset. We choose a subset U′ ⊂ U if the probability of the

most likely class is greater than a predefined threshold τ. Next, we add U′ to L along

with p(x) = argmaxm(x) as its pseudo-label, and remove U′ from U. We repeat the

procedure until the algorithm converges and no more predictions on the unlabeled data
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Inputs: L1, L2: Two views of labeled training set; U: Unlabeled training set; τ: Threshold for

selection;

Algorithm:

Loop for k iterations:

Train a classifier m1 with training data L1

Train a classifier m2 with training data L2

Classify data in U with m1 and m2

(for x ∈ U)

Find a subset U′1 of U satisfying maxm1(x)> τ and maxm2(x)< τ

U′1 = {(x, p1(x))}
Find a subset U′2 of U satisfying maxm2(x)> τ and maxm1(x)< τ

U′2 = {(x, p2(x))}
L2← L2 +U′1
L1← L1 +U′2
U← U−U′1−U′2

Output: Generated final classifiers m1 and m2 based on the new training set.

Figure 3.2: The multi-view co-training algorithm.

remain confident. Figure 3.1 illustrates the general bootstrapping process involved in

self-training.

In recent times, the use of self-training has gained wide attention and has been

proven to substantially improve results for unsupervised parsing (Mohananey et al.,

2020; Shi et al., 2020). Moreover, Steedman et al. (2003) in their experiments have

shown that self-training can indeed enhance the performance of a parser by leveraging

the unlabeled raw sentences. Self-training has the advantage of being used as a wrapper

method to other existing classifiers. A presumably downside of this approach is that

errors can reinforce over successive iterations.

3.1.1.2 Co-training

When dealing with multiple supervised classifiers, we can extend the self-training

algorithm to train on multiple views, for e.g., subsets of features of a given data, through

the use of the co-training (Blum and Mitchell, 1998) algorithm. It also makes the

primary assumptions: (1) For any given data, each feature set should be sufficient to

train a classifier and achieve a good performance, and (2) The feature set should be

conditionally independent given the class. Given a set of labeled training set L which
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can be divided into two conditionally independent feature sets L1, L2 and an unlabeled

dataset U, co-training proceeds as follows: Initially, we train m1 and m2 on views L1

and L2 respectively. At each iteration, the most confident predictions based on a chosen

threshold τ according to precisely one of the two models is added to the set of labeled

data for the other model’s view. Likewise, we can repeat the same procedure for the

other model too. In this manner, one model supplies the pseudo labels to the inputs on

which the other model is less confident. The pseudo-code for the co-training procedure

is shown in Figure 3.2.

The feature splits in co-training which mainly optimizes for sufficiency and inde-

pendence conditions does lead to a good model especially if the predictions of the base

learners are not too strongly correlated. However, a potential downside of co-training

is the presence of a high sampling bias one can typically observe during the sample

selection step when there is a strong tendency to ignore the distributional bias between

the labeled and unlabeled datasets.

3.1.2 Spectral Learning

The second important component is the use of the spectral learning algorithm (Cohen

et al., 2012, 2013, 2014) and the unsupervised estimation of probabilistic context-free

grammars (PCFGs; Clark and Fijalkow, 2020). More specifically, the notion of inside

and outside trees has a strong influence on our approach. For a given parse tree, the

inside tree corresponding to a node contains the entire subtree below that node; the

outside tree comprises everything in the tree except for the inside tree. Figure 3.3

illustrates the concept using an example.

The spectral learning algorithm mainly comprises two steps: In the first step,

we learn a fixed dimensional representation of inside and outside trees using feature

functions in conjunction with a projection defined through singular value decomposition

(SVD). In the second step, we perform the parameter estimation of the model. Our

learning algorithm identifies the presence or absence of a node dominating a substring

in the parse tree as a latent variable. The patterns of co-occurrence of the string that the

node dominates (which is represented by the inside string) and the rest of the sentence

(which is represented by the outside string) help to determine if a node exists or not.

The concept of inside trees versus outside trees is important in the case of spectral

learning for latent-variable PCFGs (L-PCFGs; Cohen et al., 2012). However, for our

use case, since no trees are present during learning, there is a strong desire to enhance it
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Figure 3.3: The extraction of inside and outside trees at a given node for a sample

sentence, “the cat sat on the table”. (a) shows the obtained parse tree, (b) inside

tree corresponding to the nonterminal VP, and (c) outside tree corresponding to the

nonterminal VP.

further to derive information only from the raw strings.

We note that our learning approach is related to a previous work on incorporating

spectral learning for unsupervised parsing by Parikh et al. (2014) to a certain degree. For

instance, both the methods rely on two central notions: the usage of word embeddings

to create a vector representation for encoding each word in the sentence, and heuristics

based on punctuation marks as a useful signal to extract the fencepost positions of

constituent spans. Furthermore, we base our approach on the idea of correlation driving

the identity of a latent state, for e.g., our objective is to minimize the inter-correlation

between inside and outside vectors. In contrast, their approach uses the additive tree

metric property to backward compute the distance among latent variables parameterized

by the distances among the observed variables.

3.2 Training Algorithm

We will use two salient notions inspired by spectral learning throughout the thesis:

inside and outside strings. For a given input sentence, x = x1 · · ·xn and a span (i, j), the

sequence xi · · ·x j denote the inside string corresponding to the span (i, j), while the pair

of sequences (x1 · · ·xi−1,x j+1 · · ·xn) denote the outside string corresponding to the span
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Using neural language model by Shen et al. (2018): Parsing-Reading-Predict Network (PRPN)
introduces a new neural parsing network that can make differentiable parsing decisions through the
use a new structured attention mechanism to control skip connections in a recurrent neural network.

Using RNNs with no independence assumptions by Kim et al. (2019b): Unsupervised Re-
current neural network grammars (URNNG) uses variational inference over latent trees to perform
unsupervised optimization of the RNNG, an RNN model that defines a joint distribution over
sentences and trees via shift and reduce operations.

Using RNNs with no independence assumptions by Kim et al. (2019a): Compound PCFG
paper found the original PCFG is sufficient to induce trees if it uses a neural parameterization,
and the model can be further enhanced via latent sentence vectors to reduce the independence
assumptions. The Compound PCFG model is basically a VAE with a PCFG decoder.

Using Constituency tests by Cao et al. (2020): By specifying a set of transformations and
using an unsupervised neural acceptability model to make grammaticality decisions, they design an
unsupervised parser. They conducted interpretability of constituency tests to highlight and explain
the parser’s strengths and shortcomings.

2 INFERENCE

While our learning algorithm is grammarless, for inference we make use of a dynamic programming
algorithm, akin to CYK, to predict the parse tree. Inference assumes that each possible span in the
tree was scored with a score function s(i, j) where i and j are endpoints in the sentence. The score
function is learned through our algorithm. We then proceed by finding the tree t⇤ such that:

t⇤ = max
t2T

X

(i,j)2t

s(i, j), (1)

where T is the set of possible binary trees over the sentence and (i, j) 2 t, with a slight abuse of
notation, denotes that the span (i, j) appears in t.

When s(i, j) is the probability of a span (i, j) being in the correct tree, this formulation gives the
tree with highest expected number of correct constituents ?. This formulation has been used recently
by several unsupervised constituency parsing algorithms ?.

3 TRAINING ALGORITHM

At the core of our approach lies the notion of inside and outside strings. For a given sentence
x = x1 · · ·xn and a span (i, j), the inside string of span (i, j) is the sequence xi · · ·xj while the
outside string is the pair (x1 · · ·xi�1, xj+1 · · ·xn).

These two types of strings provide two views of a given possible splitting point in the syntax tree.
We offer three ways, with increasing complexity, to bootstrap a score function that helps identify
whether a node should dominate a given span.

The main idea behind this bootstrapping is to start with a small seed set of training examples
(x, i, j, b) where (i, j) is a span in a sentence x and b is 1 or 0, depending on whether the span
(i, j) is dominated by a node in the syntactic tree.

Bootstrapping the seed set is dependent only on either the inside string or the outside string, and
the corresponding classifier build from this bootstrapped seed set returns a probability p(b | x, i, j).
Once a classifier is learned using the bootstrapping seed set, the classifier is applied on the training
set, and the seed set is added more examples where the classifier is confident of the label b. This is
also known as self-training ?.

In the next three sections, we present three learning algorithms of increasing complexity in their use
of inside and outside strings
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Figure 3.4: A depiction of a syntax tree, with the inside string as depicted by the sequence

xi · · ·x j and the outside string as depicted by the sequence (x1 · · ·xi−1,x j+1 · · ·xn) that

provides external context for the inside representations.

(i, j). Let us consider the diagram of a syntax tree in Figure 3.4 which is decomposed

into two components. Each of these components denoted by orange and blue colours is

a “view” of the whole parse tree that provides information on the identity of the node

that spans the words xi · · ·x j. In the scenario of unsupervised parsing which expects the

tree being unobserved during training, we have to rely on the substrings spanning either

the blue or the orange part to hypothesize if a node is present at that point or not. We

denote by hin(i, j) representations for inside strings and hout(i, j) representations for

outside strings which are both vectors. We associate each token constituting the inside

and outside strings with a vector after extracting the contextualized word representations

from a PLM, RoBERTaBASE (Liu et al., 2019). Henceforth, we will call hin the inside

representation, and hout the outside representation. In our framework, the inside

and outside representations are strictly complementary: which means that the outside

representation for a given node x can be calculated without knowing beforehand the

elements under that node.

The core essence behind using bootstrapping is to begin with a small seed set of

training examples (x, i, j,b) where (i, j) denotes a span in a sentence x, and b ∈ {0,1},
depending on whether the span (i, j) is dominated by a node in the syntax tree or

not. We note that the availability of either the inside or outside strings is sufficient to

bootstrap the seed set and the corresponding classifier trained on this seed set typically

return a probability p(b | x, i, j). The classifier after learning using the bootstrapping

seed set can be then applied on the remaining training set. Furthermore, we only add

the training examples to the existing seed set if it satisfies the condition of the classifier,

which is to be able to predict with a certain threshold of confidence pertaining to the
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Inputs: I represents the labeled inside set; U is a set of Unlabeled training sentences;

Algorithm:

• Loop for K iterations:

1. Learn the inside classifier min based on hin(i, j) derived from I

2. Use min to label U to get the predicted inside strings ŷin

3. If ŷin > τmax, extract c constituents randomly and add it to the set of pseudo-

constituents Xc

4. If ŷin < τmin, extract d distituents randomly and add it to the set of pseudo-distituents

Xd

5. I = Xc∪Xd

• Get outside strings for each I; Assign to the set of labeled output sentences O

• Learn outside model mout based on hout(i, j) derived from O

Output: inside model min, outside model mout

Figure 3.5: Our self-training algorithm.

label b. We carry out this process in an iterative fashion.

In the following three sections, we present three learning algorithms of increasing

complexity in their use of inside and outside strings.

3.2.1 Modeling Using Inside Strings

In order to compute the inside representation hin, we fine-tune a sequence classification

model, that encodes a fixed-vector representation for each token in the inside string

present in the training sentences. We compute the inside representations in a bottom-

up manner from a node’s children that encodes the phrase information of the inner

content in the span. Once we build the seed bootstrapping set, the inside model min

which is modeled at a sentence level computes an inside score, scorein(i, j), from the

inside representation hin(i, j) corresponding to the span (i, j). In the same manner,

we compute the inside score for all spans in the unlabeled input training sentence U.

Subsequently, we take the most confident inside strings from U based on a predefined

threshold τ. More specifically, the sentences whose confidence bounds is higher than

τmax are treated as pseudo-constituents while the sentences whose confidence bounds is
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lower than τmin are treated as pseudo-distituents. To reduce the training time, we choose

a random sample of c pseudo-constituents and d pseudo-distituents which constitute

the labeled inside set I. We further subject the inside model to an iterative self-training

procedure whose steps are detailed as shown in Figure 3.5. An alternative option for self-

training using probability distribution can be thought of along the lines of minimizing

the KL divergence (Kullback and Leibler, 1951) between teacher and student outputs.

We suspect it would not yield similar performance in comparison to employing hard

judgments using class labels.

3.2.2 Modeling Using Inside and Outside Strings

Once we build the inside model with self-training, we can then look to incorporate the

outside string. For a given inside string, we can further divide the outside string into two

parts: a left-outside to capture the first token of the outside string towards its immediate

left side, and a right-outside to capture the first token of the outside string towards its

immediate right side. We denote the sentence boundary and the given inside string under

consideration by a [MASK] placeholder token. Finally, we can reduce the outside string

to the form consisting of the triple (xi−1, [MASK], x j+1) pertaining to a given inside

string xi · · ·x j. In order to compute the outside representation hout, we extract the triple

for every span in the training sentences and fine-tune another sequence classification

model which encodes a fixed-vector representation for each triple. The outside model

mout computes an outside score, scoreout(i, j), from the outside representation hout(i, j)

corresponding to the span (i, j). We compute the outside representations in top-down

manner from a node’s parent and siblings that encodes the contextual information of

the span.

3.2.3 An Iterative Co-training Algorithm

The main inspiration behind our final algorithm is the standard co-training algorithm

(refer Section 3.1.1.2). To cover the global information, we consider the inside and

outside strings to be the two views while performing the co-training procedure. We note

that the co-training procedure requires the two views to be independent of each other

conditioned on the label of the training instance. This is akin to the type of assumption

that, for instance, PCFGs satisfy, when breaking a tree into an inside and outside tree:

the two trees are conditionally independent given the nonterminal that connects them. In

our case, we satisfy this assumption by creating inside and outside string representations
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Inputs: I is the set of labeled inside sentences; O is the set of labeled outside sentences; U is a

set of unlabeled sentences.

Algorithm: Loop for K iterations:

• Choose c pseudo-constituents and d pseudo-distituents from the most confidently pre-

dicted outside strings ŷout from U based on τ

• Extract the inside strings Î corresponding to the c pseudo-constituents and d pseudo-

distituents of outside

• I = I∪ Î

• Train the inside model min based on hin(i, j) derived from I

• Choose c pseudo-constituents and d pseudo-distituents from the most confidently pre-

dicted inside strings ŷin from U based on τ

• Extract the outside strings Ô corresponding to the c pseudo-constituents and d pseudo-

distituents of inside

• O = O∪ Ô

• Train the outside model mout based on hout(i, j) derived from O

Output: Two models min, mout, that predict the inside and outside scores for unlabeled sentences.

We combine these predictions by multiplying together and optionally re-normalizing their class

probability scores.

Figure 3.6: Our co-training algorithm.

separately. As a result, the sufficiency and independence of each view is guaranteed.

Once we have the inside and outside models trained on their conditionally independent

inside and outside feature sets, we can employ an iterative approach. At each iteration,

we move only the inside strings Î that are confident to be likely the inside strings of

pseudo-constituents and pseudo-distituents to the labeled training set of the inside model

I whose decisions are guided by the outside model. Therefore, the outside model (which

acts as a teacher agent) provides the labels to the inside strings on which the inside

model (which acts as a student agent) is uncertain. Likewise, we move only the outside

strings Ô that are confident to be likely the outside strings of pseudo-constituents and

pseudo-distituents to the labeled training set of the outside model O whose decisions

are guided by the inside model. Therefore, the inside model (which acts as a teacher

agent) provides the labels to the outside strings on which the outside model (which acts

as a student agent) is uncertain. The steps to perform the overall iterative co-training

procedure is outlined in Figure 3.6.
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Eventually, we can combine the scores obtained by the inside and the outside models

to get the score, score(i, j), for each span:

score(i, j) = scorein(i, j) · scoreout(i, j). (3.2)

3.3 Inference

Our decoding follows the chart-based parser approach, which is a Viterbi version of the

CKY algorithm (Cocke, 1969; Kasami, 1966; Younger, 1967), to produce a globally

optimized parse tree for each sentence. Let us consider a span for a sentence of length n

denoted by the pair (i, j) with i and j referring to the beginning and ending positions of a

span and k referring to the partition between i and j. Then, the pseudocode considering

only the nested loop for the CKY algorithm can be written as:

for i in range(2, n): # Length of span

for j in range(1, n-i+1): # Start of span

for k in range(1, i-1): # Partition of span

Mathematically, the above code block can be rewritten as:

t =
n

∑
i=2

n−i+1

∑
j=1

i−1

∑
k=1

1· (3.3)

Upon simplifying, we get:

t =
(n3−n)

6
· (3.4)

Therefore, for a sentence of length n, the time complexity for the CKY inference is

O(n3) and the space complexity is O(n2) (one cell for each substring).

A score function, score(i, j), learned from our algorithm assigns a score to every

span in the sentence. The score of a candidate tree is calculated by summing up the

scores of all its spans. Finally, the optimal parse tree t∗ having the highest score is

chosen by:

t∗ = argmax
t∈T

∑
(i, j)∈t

score(i, j), (3.5)

where T is the set of possible binary trees over the sentence and (i, j) ∈ t denotes that

the span (i, j) appears in t. When score(i, j) is the probability of a span (i, j) being

in the correct tree, this formulation gives the tree with the highest expected number
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of correct constituents (Goodman, 1996). This formulation has been used recently by

several unsupervised constituency parsing algorithms (Kim et al., 2019b,a; Cao et al.,

2020; Li et al., 2020a; Drozdov et al., 2019, 2020).



Chapter 4

Multi-View Learning

In this chapter, we present details about our implementation to perform unsupervised

parsing. Our approach relies on optimizing two models — inside and outside models —

with different views of the original input sentence and the resulting interactions help

each model to contribute to the improvement in performance of the other in an iterative

fashion. This chapter is organized as follows. We first give a high-level overview of

transformer architecture-based PLMs and their syntactic abilities (Section 4.1). Next,

we elucidate the technicalities involved in the seed bootstrapping procedure both for

right-branching and left-branching languages (Section 4.2). Finally, we discuss the

training aspects relating to the inside, outside, and joint model and the additional

heuristics-based span refinement strategies acting as a weak form of supervision signal

in Section 4.3.

4.1 Preliminaries

In this section, we provide a thorough background about PLMs, more specifically,

the ones based on transformer architectures, which serve as the backbone model in

our overall approach, and highlight recent studies that analyze the nature of syntactic

information these PLMs possess.

4.1.1 Transformers

Although modeling a wide variety of NLP tasks is possible using the high versatility

of recurrent neural networks, there are clear disadvantages: the inherent recurrent

structures make them challenging to perform parallelization, and the handling of long

29
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clauses causes an impediment to learning due to the vanishing gradient problem.

To counter these two limiting constraints, Vaswani et al. (2017) propose a new

model architecture: the Transformer. It consists of a multi-layer, non-recurrent neural

sequence model, encompassing a self-attention component to prepare contextual input

representations. The use of self-attention allows parallel construction of the step

representations of the input since it re-computes a state representation at every step from

the overall input. These representations do not depend on a time-dependent state that is

conventional in RNNs. As a result, transformers facilitate and accelerate the training of

larger networks. The architecture of the vanilla transformer is shown in Figure 4.1. We

investigate the various components in greater detail in the following sections.

4.1.1.1 Transformer Block

A Transformer consists of an encoder and a decoder, each of which is a stack of `

identical blocks.1 Each transformer block applies the following transformations to the

input of the block h`−1:

g̃` = MULTIATTN
(

h`−1
)

(4.1)

g` = LAYERNORM
(

g̃`+h`−1
)

(4.2)

h̃` = FFN
(

g`
)

(4.3)

h` = LAYERNORM
(

h̃`+g`
)
, (4.4)

where MULTIATTN(·) denotes a multi-headed self-attention mechanism, FFN(·) denotes

a two-layer position-wise feed-forward network, along with residual connections (He

et al., 2016), and LAYERNORM(·) denotes the layer normalization operation (Ba et al.,

2016) typically one applies to the resulting output of self-attention and feedforward

network. We note that some transformer implementations may not conform to the

exact same equations (Yang et al., 2019), however, commonly all include a multi-head

attention component and a feed-forward network.

4.1.1.2 Multi-head Attention

The multi-head attention is an extension of the standard attention mechanism which

computes attention with H independent attention heads. As a result, information from

different representation subspaces at various positions can be jointly attended to by

1Equations in Section 4.1.1 adapted from Bosselut (2020, Section 2.4).
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the model. Consider a sequence of vectors H ∈ Rl×d , where l and d denote the length

and dimension of the input sequence, the self-attention projects H into three different

matrices: the query matrix Q, the key matrix K, and the value matrix vector V. The

attention consists of multiple heads where each head computes a unique scaled dot

product attention distribution over V using Q and K to get the output representation:

Q,K,V = HWQ,HWK,HWV (4.5)

ATTENTION(Q,K,V) = softmax(
QKT
√

d
)V, (4.6)

where WQ,WK,WV are learnable parameters and softmax() is performed row-wise.

The multi-headed attention module adds an extension to the single head self-attention

by enhancing the self-attention abilities through jointly modeling interactions from

diverse representation spaces:

headi = ATTENTION
(

HWQ
i ,HWK

i ,HWV
i

)
(4.7)

The outputs of the attention heads headi can be later concatenated:

MULTIH(Q,K,V) = [head1; . . . ;headH ]Wo, (4.8)

where Wo denotes the output projection of the concatenated outputs of the attention

heads, and WQ
i , WK

i , WV
i represent the head-specific projections for Q, K, and V

respectively.

4.1.1.3 Positional Embeddings

Since the transformer does not rely on recurrence or convolution and has no formal

notion of ordering of tokens, there has to be a mechanism to inject information about

the position of tokens. The original self-attention adds the absolute position embedding

pt for each absolute position in the sequence to the input token embedding for any input

word xt :

xt = xt +pt , (4.9)

where pt ,xt ∈ R d
x . The absolute positional encodings can be fixed with the help of pre-

defined sinusoidal and cosine functions or can be learned through training parameters.
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Figure 4.1: Block diagram of the Transformer architecture.

4.1.2 Bidirectional Transformer Language Models

Bidirectional transformers, as opposed to left-to-right language models (Radford et al.,

2018, 2019; Brown et al., 2020), are capable of conditioning on both future as well as

preceding tokens (corresponding to left and right context in all layers) when learning

to predict a token at a specific position in a sequence. In the following sections, we

succinctly describe the most widely adopted pre-training method in the NLP commu-

nity for model initialization, BERT (Devlin et al., 2019), and its enhanced variant,

RoBERTa (Liu et al., 2019).
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4.1.2.1 BERT

BERT is a transformer-based PLM which is pre-trained on 3.3 billion tokens of English

text. The BERT’s training consists of two kinds of objective functions: (1) Masked

language modeling (MLM), where we replace 15% of the input tokens in a sentence

with a special token [MASK] and train BERT to predict them with their surrounding

words, and (2) Next sentence prediction (NSP), which is a binary classification loss

to predict whether two segments are adjacent in the original document or is taken

from a different document. For this purpose, the training corpus consists of tuples

([CLS],x1, . . . ,xN , [SEP],y1, . . . ,yM, [EOS]), with learnable special tokens [CLS] to clas-

sify whether x1, . . . ,xN and y1, . . . ,yM follow each other and [SEP] to segment two

sentences. With a probability of 50%, we replace the second input with a random input.

4.1.2.2 RoBERTa

An optimized variant of BERT pre-training, RoBERTa model, proposes to match

or exceed BERT’s performance by incorporating the following four modifications:

(1) training the model longer with bigger batches and over more unlabeled data, (2)

discarding the NSP objective, (3) training on sequences of large sequence length, and

(4) dynamically changing the masking pattern applied to the training data instead of a

single static mask. We use RoBERTa as the base model for all our experiments.

4.1.3 Syntactic knowledge in PLMs

Lin et al. (2019) show that BERT’s representations encode hierarchical information

rather than linear. In terms of how syntax is represented, it appears that self-attention

weights do not directly encode syntactic structure. Htut et al. (2019) find that the

attention weights present in the different layers/heads of the BERT models are not

representative of syntactically meaningful parse trees. Moreover, they find that fine-

tuning does not have much impact on the syntax inducing ability of the attention heads.

Instead, BERT token representations can be an alternative option to recover the syntactic

information.

Furthermore, there have been many studies dealing with designing syntactic prob-

ing experiments to look for evidence pertaining to the knowledge encoded in BERT

weights. Hewitt and Manning (2019) design a structural probe using BERT’s token

embeddings for finding syntax and recover parse trees on the English PTB with the

help of low-rank transformation matrices. Wu et al. (2020) introduce a parameter-free
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probing approach and their results show that the syntax which BERT learns and the

linguistic annotations have substantial disagreements. In addition, the fill-in-the-gap

probes of MLM reveal that BERT takes into consideration subject-verb agreement

when carrying out the cloze task (Goldberg, 2019; van Schijndel et al., 2019). Even

though BERT exhibits strong ability to attach subject nouns with their hypernyms,

it fails miserably for cases when the presence of negation reverses the truth of those

hypernyms (Ettinger, 2020).

4.2 Seed Bootstrapping

In this section, we pose the task of identifying the plausible constituents and distituents

from unlabeled sentences as a sequence classification task. While we do use a fixed

template to perform the seed bootstrapping process, we argue that the method is still

“unsupervised” at its core, as we are not using the annotated labels or POS tags for

parsing purposes, and the amount of engineered rules are minimal, inducing more the

inductive bias of the algorithm (inductive bias is necessary for any learning algorithm)

than the actual algorithm. In our analysis, we assume the language is already known

before and therefore its structure (left/right-branching), a form of our weak supervision.

4.2.1 Formulation for Right-branching Languages

We know from the linguistic theory that single words in a sentence (with an exception of

certain contractions and possessives) are constituents. In addition, complete sentences

are constituents and also the largest among all of its other constituents. We exploit

this idea to devise a plan for the preparation of the constituent and distituent classes.

To generate the constituent class, we take the complete sentence (start:end). To

generate the distituent class, we take the (start:end-1), · · · , (start:end-6) slices,

where start and end denote the 0th and Nth position (sentence length) respectively.

The intuition behind choosing the slicing range for distituents is governed by the fact

that the longer the sentence, there would be an unlikely chance that the constituent

spans extend right to the very end of the sentence. After creating the dataset constituting

the synthetically obtained constituent and distituent classes from the seed bootstrapping

technique, we divide it into train/validation splits. All the string slicing decisions

are made based on the feedback from this validation split iteratively until we see the

degradation in performance (measured using F1 score) on the synthetic set of trees.
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In our experiments, both PTB and CTB follow the aforementioned procedure. In the

case of PTB, we make use of additional signals such as casing-specific information

by adding contiguous title-case words while allowing only the apostrophe mark, since

apostrophes separate different tokens (for e.g., Britain’s becomes Britain ’s). We simply

follow this tokenization. To account for the bias due to the casing of spans, we identify

the most common first word and produce lowercase equivalents of contiguous title-case

words which start with that word. Moreover, since all of the sentences in the PTB

training set for the constituent class start with capital letters, it acts as a mitigation step

by calibrating the model’s aggressiveness towards the casing of the starting letter.

4.2.2 Formulation for Left-branching Languages

We design our parsing scheme slightly differently compared to the one mentioned in

Section 4.2.1, although along the same style, to accommodate the change in the position

of heads. We choose the slice (start:end) in the sentence to label the constituent

class and (start+1:end), · · · , (start+4:end) slices are chosen to label the distituent

class. In our experiments, KTB follows the aforementioned procedure. Furthermore,

we break the sentences on “*” mark and consider the resulting fragmented parts also as

constituents. Additionally, we reiterate that we do not rely on the development set with

the gold-standard trees whatsoever.

Figure 4.2 illustrates the underlying working flow of our algorithm in an end-to-end

fashion.
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4.3 Model Training

In this section, we lay out details concerning the practical implementation necessary for

training using the inside, outside, and the joint models.

4.3.1 Inside Model

Our inside model consists of a RoBERTaBASE transformer variant fine-tuned on the

bootstrapped dataset with a sequence classification head on top using a standard cross-

entropy loss. We do not explicitly perform hyperparameter search and hence keep

our optimization minimal. Instead, we build on the default values for all the hyperpa-

rameters as mentioned in HuggingFace Transformers2 (Wolf et al., 2020) due to its

previous superior performance in sequence classification tasks on the GLUE bench-

mark.3 Accordingly, we choose the Adam optimizer with a learning rate of 3e− 5,

batch size of 32, epochs of 3, and maximum sequence length of 128, for all our models.

Additionally, to monitor the validation loss and prevent overfitting, we apply the early

stopping regularization technique on the train/validation random split of 80/20 after

the seed bootstrapping procedure. We set the patience value at 3. We do note that,

however, we do not touch the development set of PTB. Furthermore, we carry out

model checkpointing, as well as logging, after every 100 steps. We evaluate the inside

model on MCC (Matthews Correlation Coefficient) as well as F1 since the classes are

imbalanced. After fine-tuning using the pre-trained RoBERTaBASE model, we find that

our best inside model achieves 0.28 MCC and 0.42 F1 on the internal validation set.

Lastly, we fine-tune the inside model on the unlabeled training sentences that generates

an inside score scorein(i, j) for every span.

For the Chinese monolingual experiment, we employ bert-base-chinese which

is trained on cased Chinese simplified and traditional text, and for Japanese monolin-

gual experiment, we employ cl-tohoku/bert-base-japanese which is trained on

Japanese Wikipedia available at https://huggingface.co/models.

In order to augment the distituent class to create more training instances, we ex-

periment with several strategies, however, nothing gave us concrete benefits. Some of

those include — word deletion (select random tokens in the sentence and replace them

by a special token), span deletion (same as word deletion, although puts more focus

on deleting spans), reordering (sample randomly several pairs of span and swap them

2https://huggingface.co/transformers/v2.3.0/examples.html#glue
3https://gluebenchmark.com/

https://huggingface.co/models
https://huggingface.co/transformers/v2.3.0/examples.html#glue
https://gluebenchmark.com/
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pairwise), and substitution (sample few words and replace them with their synonyms).

Eventually, we subject the inside model to the implementation details as mentioned

in Section 3.2.1.

4.3.1.1 Role of Heuristics

To further improve the parser’s performance, we inject additional bias into our algorithm

through the use of certain heuristics for PTB. Moreover, for CTB and KTB, it is not

necessary to incorporate such rules as our models show superior performance without

them. Once we compute the inside score, scorein(i, j), we make use of the following

post-hoc span refinement strategies to prune out false constituents, another form of our

weak supervision:

• We treat punctuation characters to mark the boundaries of a span and penalize

any span that crosses its demarcated punctuation region (indicated by a span) by

assigning a negative penalty of 0.25. Furthermore, the tokenization scheme of

PTB considers punctuation as a separate token, and thus if a token consists only

of a punctuation mark, then we consider it a constituent boundary.

• We delete any constituent if it starts or ends with the most common word suc-

ceeding the comma punctuation.

• We extract the most common starting word and check if its accompanying word

does not belong to either the stop word or is present in the top 20 most frequent to-

kens of the PTB training set. Finally, we assign the scores of these corresponding

spans in the CYK chart cell to the maximum value.

• Intuitively, from the linguistic definition of constituents, we refrain from bracket-

ing if we identify a contiguous group of rare words (tokens not in the top 1000

most frequent list).

We argue that these heuristics are not language-specific biases, that contribute only

to a certain extent in making the parser robust and should be considered a standard

post-processing step. Overall, we observe about 3.8 F1 improvements contingent on the

inside model. Based on our experiments, the role of heuristics is smaller in comparison

to the combined self-training and co-training gains. Their effect becomes negligible

after successive iterations of the self-training process due to the predictions roughly
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obeying the templated rules. As outlined in Figure 3.1, we conduct self-training on the

inside model for three iterations.4

4.3.2 Outside Model

Once we calculate the inside scores, we extract the outside strings of spans having the

inside scores satisfying a predetermined cutoff value and choose the threshold values

corresponding to the lower and upper bounds to ensure the distribution of class labels

is about 1:10 (with the distituent class being the majority). As a result, the model

predictions do not lean aggressively towards constituents in the case of an equal split.

Moreover, from a linguistic standpoint, one can be certain that the count of distituents

in a sentence must necessarily exceed its constituents. We assume the outside strings

satisfying the upper and lower bounds of the threshold as gold-standard outside of

constituents and distituents, respectively. As done previously, we fine-tune the outside

model (similar in architecture to the inside model) on the unlabeled training sentences

that generates an outside score scoreout(i, j) for every span. Lastly, we subject the

outside model to the implementation details as mentioned in Section 3.2.2.

4.3.3 Jointly Learning with Inside and Outside Models

Up until this stage, we have two models that operate separately on the inside and

outside strings. Once we compute the outside scores using the outside model, we

run it on the unlabeled training sentences and choose the outside strings obeying the

threshold bounds as determined previously (see Section 4.3.2). Next, we extract the

corresponding inside strings and re-train the inside model on the old highly confident

inside strings (from Section 4.3.1) along with the new inside strings obtained from the

highly confident outside strings. Similarly, we apply the same procedure on the outside

model to augment its input data. As mentioned in Figure 3.2, we repeat the co-training

process twice.

Subsequently, we subject the inside and outside models to the implementation

details as mentioned in Section 3.2.3. Finally, we calculate the score corresponding to

a given span, score(i, j), as shown in Equation 3.2 and select the best parse tree using

Equation 3.5.

4We only use the top 5K inside strings for self-training to cover maximum possible iterations as it is
representative of the whole training set in terms of the average sentence length and punctuation marks.
Accordingly, we set τmin as 0.0005 and τmax as 0.995.



Chapter 5

Empirical Study

In this chapter, we aim to provide readers with an empirical comparison of different

unsupervised parsing systems. It is important to set up a unanimously agreed-upon

pipeline when designing unsupervised parsers to draw meaningful comparisons. For

instance, several studies used part-of-speech tags as an additional signal or did not

specifically create splits for training and testing purposes. In Section 5.1, we provide

details concerning the experimental settings mainly comprising datasets and baselines

we use to draw comparisons. Further, we evaluate our approach against previous

systems for both right-branching as well as left-branching languages (Section 5.2).

Additionally, we conduct a thorough analysis to study the effect of distituent selection

on the amount of bias it injects during the seed bootstrapping procedure. Moreover,

we analyze the impact of self-training and co-training on the overall performance

broken down at every stage of the training as well as perform error analysis to inspect

the parser’s misclassifications. We also briefly touch upon the generation of phrase

labels (Section 5.3). Finally, we enumerate the noticeable failings of our approach in

Section 5.4.

5.1 Experimental Setup

In this section, we outline the datasets we use to test our methodology on. Our evaluation

strategy closely follows as in recent works (Kim et al., 2019a; Cao et al., 2020; Li et al.,

2020b). To summarize, we ignore punctuation during evaluation while we do keep

them during training. Finally, we compute the sentence-level F1 for right-branching

languages and Evalb F1 for left-branching languages. Refer Section 2.2.2 for more

comprehensive details about the various evaluation methods.

40
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5.1.1 Input Corpora

In grammar induction, treebanks supply the input data, which contain both sentences

and their annotated POS tags. Early approaches typically considered both these sources

of information, whereas, recent approaches used only raw text to obtain an improved

performance. The most frequently used corpora for English language experiments is

the Wall Street Journal (WSJ) section of the Penn Treebank (PTB; Marcus et al. 1993).

with standard splits of section 02-21 for training, 22 for validation and 23 for testing

purposes. For our Chinese experiments, the Chinese Treebank (CTB; Xue et al. 2005)

corresponding to version 5.1 with the same splits as in Chen and Manning (2014) was

used. For our Japanese experiments, we used the Japanese Keyaki Treebank (KTB;

Butler et al. 2012) with 80% of the sentences for training, 10% for validation, and

10% for testing after shuffling the corpus. In addition, for multilingual experiments,

Statistical Parsing of Morphologically Rich Languages (SPMRL; Seddah et al., 2013)

dataset can be used to evaluate grammar induction capabilities for nine languages. A

significant drawback of relying on treebanks is that it is relatively disparate in nature

compared to how humans converse in their day-to-day lives but rather typical of the

structure of language commonly parsed by supervised parsing systems.

5.1.2 Trivial Baselines

We consider three naïve baselines consisting of right-branching, left-branching, and

balanced binary trees. A balanced tree is one in which all subtrees’ right and left

branches contain the same number of elements. We construct the balanced tree baseline

by recursively dividing a group of n leafs into two groups each of size
⌈n

2

⌉
adjoining

one another until there exists one leaf node per group. To construct the right-branching

baseline, we combine two nodes from right to left, whereas in the left-branching

baseline, we combine them from left to right. In addition, we also specify the oracle

baseline, which is the highest possible score with binarized trees because we compare

them to non-binarized gold trees according to the convention, as most unsupervised

parsing methods output fully binary trees.

5.2 Results

In this section, we list the experimental results and report the mean/max scores resulting

from 4 runs of the chosen model with different random seeds for both right-branching
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and left-branching languages.

5.2.1 Right-branching Languages

For PTB analysis, we choose to evaluate a total of nine models after deciding to group

strong baselines containing open-source implementation broadly under four categories:

(1) relying on the concept of syntactic depth or making no independence assumptions

(PRPN; Shen et al., 2018b)1, (ON; Shen et al., 2019)2, and (URNNG; Kim et al.,

2019b)3, (2) autoencoder-like training objective (DIORA; Drozdov et al., 2019)4 and

(S-DIORA; Drozdov et al., 2020)5, (3) PCFGs with neural parameterization (Neural

PCFG and Compound PCFG; Kim et al., 2019a)6, (4) based on transformer models

(Tree Transformer; Wang et al., 2019)7 and (Constituency Test; Cao et al., 2020)8.

2-6 7-11 12-16 17-21 22-26 27-31 32-36 37-41 42-46 47-51 52-56 57-61
Sentence Length

0

20

40

60

80

100

F 1

UP Models
PRPN
ON
Neural PCFG
Compound PCFG
Constituency Test
Ours

Baselines
Right Branching
Left Branching

Figure 5.1: F1 of different models grouped by sentence length on the PTB test set.

Figure 5.1 provides a comparison of the different parsers’ performance over varying

sentence lengths binned at equal intervals. As we can perceive, right-branching is a

strong baseline and is almost comparable to the results of PRPN. Among category

(1), we find that ordered neurons (ON) which use gated attention mechanisms to train

1https://github.com/yikangshen/PRPN
2https://github.com/yikangshen/Ordered-Neurons
3https://github.com/harvardnlp/urnng
4https://github.com/iesl/diora
5https://github.com/iesl/s-diora
6https://github.com/harvardnlp/compound-pcfg
7https://github.com/yaushian/Tree-Transformer
8https://github.com/stevenxcao/constituency-test-parser

https://github.com/yikangshen/PRPN
https://github.com/yikangshen/Ordered-Neurons
https://github.com/harvardnlp/urnng
https://github.com/iesl/diora
https://github.com/iesl/s-diora
https://github.com/harvardnlp/compound-pcfg
https://github.com/yaushian/Tree-Transformer
https://github.com/stevenxcao/constituency-test-parser
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Model
WSJ-Full WSJ-10

Mean Max Mean Max

Trivial Baselines:

Left Branching (LB) 8.7 17.4

Balanced 18.5

Right Branching (RB) 39.5 58.5

Unsupervised Parsing approaches:

PRPN† (Shen et al., 2018b) 37.4 38.1 58.4 –

URNNG? (Kim et al., 2019b) – 45.4 – –

ON† (Shen et al., 2019) 47.7 49.4 63.9 –

Tree Transformer†? (Wang et al., 2019) 50.5 52.0 66.2 –

Neural PCFG† (Kim et al., 2019a) 50.8 52.6 64.6 –

DIORA? (Drozdov et al., 2019) – 58.9 60.5 –

Compound PCFG† (Kim et al., 2019a) 55.2 60.1 70.5 –

S-DIORA†? (Drozdov et al., 2020) 57.6 64.0 71.8 –

Constituency Test? (Cao et al., 2020) 62.8 65.9 68.1 –

Ours? (using inside) 55.9 57.2 64.2 –

Ours? (using inside w/ self-training) 61.4 64.2 66.9 –

Ours? (using inside and outside w/ co-training) 63.1 66.8 73.1 –

Oracle Binary Trees 84.3 82.1

Table 5.1: Unlabeled sentence-level F1 on the full as well as sentences of length ≤ 10 of

the PTB test set without punctuation or unary chains. We evaluate each model using the

evaluation script provided by Kim et al. (2019a) and take the baseline numbers of certain

models from (Kim et al., 2019a; Cao et al., 2020). † denotes models trained without

punctuation and ? denotes models trained on additional data.

an RNN for inducing trees, achieves a score of 47.7 F1, whereas, in category (2), we

observe that S-DIORA, which is a superior variant of DIORA scores 57.6 F1 on the

PTB test set. When considering category (3), we notice that Compound PCFG which is

an extension of Neural PCFG using a continuous latent vector formulated at a sentence-

level, attains a score of 55.2 F1, whereas, in category (4), we see that Constituency Test

which trains a RoBERTa model using predefined constituency tests, manages to obtain

62.8 F1 on the PTB test set. In comparison to the models as mentioned above, our vanilla

inside model learns the underlying phenomena of whether a span forms a coherent

meaning, can produce competitive results and is already in the range of previous best

models like DIORA and Compound PCFG. Our best parser using the inside and outside
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models after the co-training procedure, which mainly optimizes for span boundaries of

plausible constituents, secures a marginally greater score of 63.1 F1 on the PTB test

set. Although, Shi et al. (2021) obtain strong results by relying on distant supervision

using sources that contain naturally-occurring bracketings , we believe the nature and

diversity of the datasets (especially the QA-SRL dataset) has a much bigger role to play

in boosting scores than on the actual learning process itself. Moreover, a considerable

amount of hyperlinks in the data match syntactic constituents, thereby limiting the

scope for the actual algorithm to induce meaningful tree structures. Hence, we do not

include their results in our analysis. Table 5.1 reports the unlabeled sentence-level F1

scores on the PTB test set. While a great deal of approaches use additional data, there

is a slight difference, however. DIORA and S-DIORA approaches both use context-

insensitive vectors to maintain the context-free nature of chart parsing. In contrast, Tree

Transformer and Constituency Test approaches rely on the context-sensitive PLMs.

It is worth noting that domain-adaptive pre-training (pre-training RoBERTa model

on the PTB training sentences) as well as task-adaptive pre-training (pre-training

RoBERTa model on the synthetically created classification data) and further fine-

tuning (Gururangan et al., 2020), did not yield substantial gains in the downstream task

performance for us.

Next, we take a look at Chinese which exhibits several linguistic differences com-

pared to English such as lesser morphology, more mixed headedness, and lesser propor-

tions of attachment ambiguity, etc. (Levy and Manning, 2003). We note that the scores

for all the chosen models are fairly lower than their English counterparts indicating the

sheer amount of difficulty in parsing Chinese sentences due to tree-structural differences

between the two treebanks. In the case of CTB, our final parser achieves 41.8 F1 on

the CTB test set, which is clearly 5.8 F1 points greater than the previous best-published

result by Compound PCFG. Table 5.2 displays the unlabeled sentence-level F1 scores

on the CTB test set. It is worth noting that we do not fine-tune the hyperparameters

while training our parser on any of the languages to prevent overfitting. Furthermore,

we did not consider some of the models which was previously chosen for PTB during

our analysis as extending those models to include Chinese is non-trivial and not fairly

straightforward owing to multiple reasons, e.g., lack of relevant datasets (as DIORA

uses SNLI and MultiNLI for training), lack of linguistic knowledge expertise (not easily

transferable notion for designing constituency tests), and so on.

Figures A.1 and A.2 in the appendix show step-wise analysis at each stage of the

training for a sample sentence taken from the CTB and PTB training set, respectively.
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Model
CTB

Mean Max

Trivial Baselines:

Left Branching (LB) 9.7

Random Trees 15.7 16.0

Right Branching (RB) 20.0

Unsupervised Parsing approaches:

PRPN (Shen et al., 2018b) 30.4 31.5

ON (Shen et al., 2019) 25.4 25.7

Neural PCFG (Kim et al., 2019a) 25.7 29.5

Compound PCFG (Kim et al., 2019a) 36.0 39.8

Ours (using inside) 37.8 38.4

Ours (using inside w/ self-training) 40.6 41.7

Ours (using inside and outside w/ co-training) 41.8 43.3

Oracle Binary Trees 81.1

Table 5.2: Unlabeled sentence-level F1 on the CTB test set. We evaluate each model

using the evaluation script provided by Kim et al. (2019a) and take the baseline numbers

also from Kim et al. (2019a).

As we can observe, in contrast to the vanilla inside model, the parser using the inside

and outside models after the co-training stage produces fewer crossing brackets.

5.2.2 Left-branching Languages

We next evaluate the efficacy of our approach on languages with left-branching ten-

dencies and consider the Japanese Treebank (KTB) for our analysis. One of the main

differences between English and Japanese grammar is that in the latter the object comes

before the verb which makes parsing challenging. Consequently, there warrants an

exploration to assess the generalization capabilities of our chosen models for a strictly

left-branching language. As we can observe, left-branching is a strong baseline and

is roughly on par with the results of PRPN, which has an innate right-branching bias.

Our final parser obtains 39.2 F1 on the KTB test set which surpasses the previous

benchmarks. Table 5.3 shows the Evalb F1 scores on the KTB test set. We further note

that sentences in KTB do contain null elements and these artifacts usually start with the

“*” marker, which we remove to maintain the unsupervised nature of our experiments.
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Model
KTB-40 KTB-10

Mean Max Mean Max

Trivial Baselines:

Left Branching (LB) 29.4 51.6

Right Branching (RB) 9.8 22.9

Unsupervised Parsing approaches:

PRPN (Shen et al., 2018b) 27.2 31.8 30.1 33.6

URNNG (Kim et al., 2019b) 10 10.2 22.7 22.7

DIORA (Drozdov et al., 2019) 24.9 26.0 42.3 43.3

DIORA-all (Hong et al., 2020) 36.4 40.0 47.1 48.9

Ours (using inside) 33.7 36.3 53.8 55.9

Ours (using inside w/ self-training) 37.6 39.8 55.5 58.2

Ours (using inside and outside w/ co-training) 39.2 41.1 56.7 59.1

Upper Bound 76.5 76.6

Table 5.3: Evalb F1 on the full (F1-all) and length ≤ 10 (F1-10) sentences of the KTB

test set discarding punctuation corresponding to KTB-40 and KTB-10, respectively. We

take the baseline numbers of models from Li et al. (2020b). See Table 2.1 to view the

hyperparameters used for evalb.

Based on our findings, we hypothesize that a monolingual model trained on a corpus

with an extensive vocabulary size for a given language performs substantially better

than multilingual models, such as XLM-RoBERTa (Conneau et al., 2020). We attribute

the degradation in performance for multilingual models due to a likely misalignment

in the vector space between languages. Figure A.3 in the appendix shows a step-wise

analysis at each stage of the training for a sample sentence taken from the KTB training

set.

5.3 Analyses

This section describes the effects of our algorithm’s three main components: self-

training, co-training, and distituent selection. Furthermore, to better understand the

types of errors that the system is or is not making, we perform linguistic error analysis

and provide suitable explanations and alternatives to rectify such errors.
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5.3.1 Effect of Self-Training

PLMs that capture rich contextualized textual representations can help in parsing when

the sheer amount of unlabeled data is enormous. For this reason, we expect that self-

training in addition to pre-training adds no new information to the fine-tuned parser.

However, we find that self-training boosts the parser’s performance by about 9.8%,

reassuring that self-training complements unsupervised pre-training. Table 5.4 shows

a fine-grained analysis corresponding to different stages of self-training for the inside

model in the case of PTB. As can be inferred, self-training improves the performance

of the inside model by 5.5 F1 points. There is one caveat, though. For our experiments,

we use the PTB test set instead of the PTB validation set to avoid fine-tuning and

thereby overfitting on the test set based on the feedback obtained from the validation

set. Additionally, it helps to keep the nature of our experiments purely unsupervised.

We do note that, however, when evaluated individually on the validation set, we find the

results comparable to that of the test set.

Model #ST-steps

0 1 2 3

Inside 55.9 57.7 59.5 61.4

Table 5.4: Unlabeled sentence-level F1 on the full PTB test set after applying the iterative

self-training algorithm on the inside model.

5.3.2 Effect of Co-training

The process of creating two conditionally independent views to integrate multi-view

information is paramount. One of the options would be to concatenate both the inside

and outside vectors during training and inference. With this approach, we see negligible

improvement, scoring a meager 13.2 F1 on the PTB test (without self-training). Hence,

we verify the effectiveness of co-training compared to simply concatenating: the simple

concatenation strategy cannot fully harvest the information from each view and tends to

make the learning problem on the downstream task intractable. The idea of separating

the two models for co-training is to learn constituent boundaries to identify the splitting

points in a sentence through independent data views. After co-training, the performance

of the inside-outside joint model increases by 1.7 F1 points, as shown in Table 5.5 with

improvements at each step. In comparison to using self-training, we observe that the
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Using Inside and Outside w/ co-training

Figure 5.2: F1 grouped by sentence length on the PTB test set for different strategies.

gain is not significant after co-training. We hypothesize that when the initial seed data

is limited, co-training can address the problem of coverage. As the amount of seed

data increases, the superiority of co-training gradually reduces. Besides, the inside

vectors (built upon transformer architecture) inherently possess contextual knowledge

due to being trained on a large corpus and having a high likelihood of adding no new

information during co-training. Figure 5.2 shows the plots corresponding to the effect of

sentence length on the model performance under the three settings: (1) using only inside,

(2) using inside with self-training, and (3) using inside and outside with co-training

strategies.

Model #CT-steps

0 1 2

Inside and

Outside
61.4 62.9 63.1

Table 5.5: Unlabeled sentence-level F1 on the full PTB test set after applying the iterative

co-training algorithm on the joint inside and outside models.

5.3.3 Effect of Distituent Selection

It is quite evident from Section 4.2 that our algorithm injects language-specific biases

during the seed bootstrapping step. We further explore two settings on the PTB —
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random and left-branching bias, to assess the extent to which the selection strategy of

the disitituent affects the parser’s performance: (1) In the random setting, we select

distituents from the slice (start:r), where r is a random number generated between

start+1 and end-1, both inclusive, which produces 19.3 F1 for the inside model; (2)

In the left-branching bias setting, we prepare the seed bootstrapping similar to KTB (a

left-branching treebank; as explained in Section 4.2.2), which results in 11.2 F1 for the

inside model. Therefore, the method in which we carry out the initial seed classification

strongly influences the predicted parse trees.

5.3.4 Linguistic Error Analysis

Conventionally, we evaluate the performance of a parser using a single metric, F1

score. Although a robust metric, it does not provide any additional information about

the source of remaining errors that are linguistically meaningful. In the case of PTB,

as depicted in Table 5.6, we notice our model achieves high accuracy scores while

predicting all the phrase types except for the adjective phrase (ADJP). To classify errors,

we rank the set of node errors according to their frequencies and place them into buckets.

We find prepositional phrase (PP) attachment to be the most significant contributor to

the overall error. We further classify each bucket as one of the error types and provide

possible explanations for some of them below:

Bracketing inner NP of a definite Noun Phrase. When a definite article links with

a singular noun, there is a need to shelve the inner spans for accommodating the larger

span having the definite article, e.g., the [ stock market ]

Grouping NP too early overlooking broader context. Before the training step, the

parser collapses infrequent tokens to a single form. As a result, it aggressively groups

rare words in the corpus. Either or both of building an improved outside model and

tuning the vocabulary size can alleviate these type of errors to a considerable extent,

e.g., Shearson [ Lehman Hutton ] Inc.

Omitting conjunction joining two phrases. The parser demonstrates poor signs of

understanding of co-ordination cases in which conjunction is a direct sibling of the

nodes being shifted, or is the leftmost or rightmost node being shifted, e.g., Notable [ &

Quotable ]

Confusing contractions with Possessives. Since many contraction phrases like

{they’re, it’s} exist in PTB, the parser often mistakes them with Possessive NPs, causing

undesired splitting. Expanding the contractions can be a good first step to correct these
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PRPN ON URNNG
Compound

PCFG
S-DIORA

Constituency

Test

Our Best

Parser

SBAR 50.0 51.2 74.8 56.1 59.2 66.1 81.7
NP 59.2 64.5 39.5 74.7 78.0 79.4 73.5

VP 46.7 41.0 76.6 41.7 78.9 68.2 70.4

PP 57.2 54.4 55.8 68.8 67.1 86.2 77.8

ADJP 44.3 38.1 33.9 40.4 49.1 62.6 40.9

ADVP 32.8 31.6 50.4 52.5 59.9 63.9 70.4

Table 5.6: Average recall per constituent category (i.e. label recall) in (%). We take the

results of PRPN, ON, URNNG, and Compound PCFG from Kim et al. (2019a), S-DIORA

from Drozdov et al. (2020), and Constituency Test from Cao et al. (2020).

systematic errors, e.g., the company [ ’s $ 488 million in 1988 ]

In the future, we would like to build comprehensive error analysis protocols for

both CTB and KTB, supplemented by feedback obtained from the respective language

experts. In addition, we can make use of a supervised constituency parser to synthetically

label the predicted parse trees and then run the Berkeley parser analyzer (Kummerfeld

et al., 2012) to quantitatively understand the various linguistic error types as shown

by Drozdov et al. (2020).

5.3.5 Unsupervised Labeled Parsing

We further investigate unsupervised labeled constituency parsing to see if the parser

can identify linguistically pertinent constituent spans and extract labels such as Noun

Phrases (NPs) and Verb Phrases (VPs). We typically evaluate labeled parsing by

checking if a span associates with the correct label. We can effectively induce span

labels using our methodology after extracting the learned representations from the inside

and outside strings and later clustering. When labeling a gold bracket, our method

achieves 61.2 F1 on the full PTB test set and is comparable with the current best model,

DIORA (Drozdov et al., 2019). Figure B.1 visualizes the alignment of induced clusters

and linguistic gold-standard labels using a heatmap. We note that since RoBERTa

outputs subword vectors which do not conform strictly to word-level vectors, we further

aggregate these vectors with mean-pooling to achieve a word-level representation using

Sentence Transformers (Reimers and Gurevych, 2019).9 We select 600 codes while

9https://github.com/UKPLab/sentence-transformers

https://github.com/UKPLab/sentence-transformers
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doing the clustering initially, such that we are left with about 25–30 clusters after

the most common label assignment process, i.e., the number of unique phrase types.

The phrase clusters are assigned to: NP(7), PP(5), WHPP(3), ADVP(3), ADJP(2), S(2),

WHADVP(1), UCP(1), VP(1), PRN(1), QP(1), SBAR(1), WHNP(1), CONJP(1) according

to the majority gold labels present in the chosen cluster. In other words, these 14

assigned phrase types correspond with the 14 most frequent labels. Table B.1 lists

the induced non-terminal grouped across different clusters and also its correctness in

identifying the gold labels. A future work can be in the direction of creating a single

model capable of achieving both bracketing and labeling at one pass and the possibility

to explore multilingually. Further, these induced labels can function as additional

features for the inside and outside models to achieve even better predictive power.

5.4 Limitations of this Work

This study contains several drawbacks, some of which are intentional and help to define

the focus of the investigation, while others are more troublesome.

Assumptions about Language Branching. Language has a tendency to be consis-

tently right-branching or consistently left-branching or branch about halfway in between.

In the case of a right-branching language (such as English), the head of the sentence is

typically at the beginning, and a sequence of modifiers usually follows it (head-initial).

As a result, the parse trees grow down and to the right (e.g. the cat who was waiting at

the doorstep). In contrast, for a left-branching language (like Japanese), the modifier

usually precedes the head (head-final) and generates parse trees that grow down and to

the left (e.g. who was waiting at the doorstep, the cat). The prior knowledge about the

linguistic concept of branching has an impact on our seed bootstrapping procedure and

a tendency to create a branching bias (see Section 4.2 for specific details). Furthermore,

there exists a lack of support for languages with mixed branching. In principle, we can

fix a single branching strategy by reversing the word order (e.g. right-to-left instead

of left-to-right) and aligning the words in the final parse to match that of the original

input sentence. We argue that such right-skewness biases are prevalent in most of the

recent works which rely on the notion of syntactic depth to recover phrase-structure

trees (Dyer et al., 2019).

Additional Heuristics for PTB. While our approach is standalone in nature and

fully capable of producing strong performance on all the evaluated treebanks which is
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comparable to the recent systems (Kim et al., 2019b,a; Drozdov et al., 2019), we assert

that in order to achieve the state-of-the-art performance for PTB, there is a need to

inject a small amount of heuristics making it not purely-supervised (see Section 4.3.1.1

for exact details). However, the contributions from these heuristics are much smaller

in comparison to the semi-supervised learning approaches combined. We merely treat

these heuristics as a post-processing step for refinement purposes after identifying the

most common false constituents in the PTB development set.

Unable to Induce Grammar. Another shortcoming of our approach is that the parser

is grammarless. In other words, we do not rely on a grammar model to generate rule

probabilities for inducing the bracketing structure of a sentence. However, in the recent

past, there has been rapid progress in studying the induced grammar’s ability to parse

sentences by employing neural networks to learn grammar rules (e.g. context-free

rewrite rules) implicitly (Jin et al., 2019; Kim et al., 2019a; Zhu et al., 2020; Yang et al.,

2021).



Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we presented the readers with a comprehensive overview of unsupervised

parsing as well as described our contributions to the development of this field.

In Chapter 2, we walked through the history of unsupervised parsing, which dates

back to the 1990s. Since 2015, the field has been revolutionized by the general trend

in modeling linguistic structures using neural models. We formally stated the task

definition and explained the evaluation protocols. In addition, we pointed out unfair

comparisons prevalent among today’s systems and posited a need to enforce a standard

protocol both during training and inference.

In Chapter 3, we proposed a neural unsupervised parsing framework to learn con-

stituency trees from raw sentences. Unlike the previously proposed models such as

the Constituent-Context Model (CCM; Klein and Manning 2002), the Dependency

Model with Valence (DMV; Klein and Manning 2005), and Unsupervised Maximum

Likelihood estimator for Data-Oriented Parsing (UML-DOP; Bod 2006), which ex-

plicitly required the parts of speech (POS) of the words as input both during training

and inference, we argue ours is a more realistic setup as we have not made use of

any POS tags. The training pipeline consisted of mainly three stages: adoption of

a seed bootstrapping technique, relying on inside and outside strings drawing close

connections from spectral learning, and further refinement of the proxy-labels learnt

through the employment of self-training and co-training strategies. In addition, we

applied the CKY dynamic programming parsing algorithm to calculate the Viterbi tree

with the help of a chart table and obtain the best parse.

In Chapter 4, we reviewed basic terminologies around PLMs, specifically, the

53
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transformer architecture, including various components like self-attention, multi-head

attention, positional embeddings, and layer normalization. Next, we explained salient

information about BERT whose invention could very well be regarded as the “ImageNet

moment” in NLP, and further described the variant which served as the backbone

model in our approach, the RoBERTa. We concisely provided details about the kind of

syntactic knowledge present in these PLMs, especially BERT and its variants. Finally,

we focused on the inner workings and practical implementation of our algorithm.

In Chapter 5, we performed a comprehensive empirical study to portray the effec-

tiveness of our approach. We showed that our parser could generalize multilingually to

treebanks of both right-branching and left-branching languages with a minimal change.

We also analyzed the effect of distituent selection and performed an exhaustive lin-

guistic error analysis to study the common parsing errors. In addition, we examined

the impact of self-training and co-training strategies on the overall performance for

different modeling phases of training. Furthermore, we explored unsupervised labeled

parsing to induce span labels from the inside and outside vectors. Lastly, we highlighted

few areas of concern which become potential limitations and shall be addressed in our

future work.

6.2 Future Work

Despite the recent success in unsupervised parsing, we still have no acceptable system

that can shed some light on the children’s discovery of structure in language. We argue

that in order to achieve this goal, the focus needs to shift from incentivizing the creation

of more accurate parsers to actually learning the hierarchical structures in a meaningful

manner.

Humans and NLP systems process different amounts and nature of the training

data. For instance, PLMs are typically trained on Wikipedia, books, articles, and other

corpora; the syntactic properties acquired by these models are significantly different

compared to the child-directed speech picked up by humans. Therefore, there is often a

limit associated with learning from these datasets alone. Moreover, PLMs generally rely

only on the textual component to learn language-related phenomena, which is in stark

contrast to the visual perception and social interaction through which humans learn

language. Consequently, it becomes vital to integrate and jointly learn from other data

modalities while designing unsupervised parsing systems. Visually-grounded grammar

induction and the establishment of large-scale datasets for its evaluation purposes is an
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important direction in this regard (Shi et al., 2019; Zhao and Titov, 2020; Hong et al.,

2021). Recently, there has been considerable progress in creating language models from

raw audio as input, e.g., Textless NLP1, that can learn aspects of natural language such

as accent, tone, prosody, expression, pitch, timbre, etc., beyond text. In the modern

era of PLMs, the ability to incorporate parse tree structures on downstream tasks has

been severely limited in applications. However, recent studies (Bai et al., 2021; Sachan

et al., 2021) have shown the inclusion of syntactical information from dependency

or syntax trees has been proven to be beneficial for information retrieval tasks of

semantic role labeling (SRL) and named entity recognition (NER). Furthermore, there

is a desire to achieve out-of-distribution generalization as well as domain adaptation.

The PTB dataset consists of multiple genres and has universally been referred to as

the prototypical news domain. It would be interesting to know where the current

unsupervised parsing models stand when evaluated on non-canonical data arising from

social media and dialogue systems. One other possible direction for future research is

to explore few-shot parsing techniques to emphasize the diversity of the few labeled

examples in the training dataset to yield maximum performance. Besides, from an

engineering standpoint, Few-shot parsing (refer Section 2.3) produces substantially

better results and is workable compared to fully unsupervised parsing. Along the same

lines, it has been shown that combining few-shot parsing and self-training approaches

can further boost performance for all models (Shi et al., 2020). Further, understanding

the kind of supervision one requires to solve an intermediate auxiliary task not dependent

on theory explicitly and developing models grounded in basic linguistic theory can be a

rising direction for future work. Lately, many top-scoring models seem to adopt this

strategy (Cao et al., 2020; Shi et al., 2021). Lastly, the research area of multilingual

and code-switched unsupervised parsing needs additional spotlight, with greater reason,

since creating an unsupervised parser for low-resource languages is one of the field’s

main motivations (see Section 1.1).

We hope to see newer research directions emerge in the field of unsupervised parsing

in the upcoming years and much focus to shift to some of the lesser spoken languages

out of about 7,000 languages in the world. Besides, from the viewpoint of internet of tiny

things, multi-lingual unsupervised parsing using a single model has the added advantage

of removing the additional overhead due to network latency and also consuming lesser

memory as they have fewer trainable parameters.

1https://ai.facebook.com/blog/textless-nlp-generating-expressive-speech-from-raw-audio

https://ai.facebook.com/blog/textless-nlp-generating-expressive-speech-from-raw-audio
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Figure A.1: Example tree taken from the CTB training set. After the co-training procedure

(b), the parser correctly identifies constituents “十四点四一亿元", “新增贷款十四点四

一亿元", and “去年新增贷款十四点四一亿元" compared to the previous step using

the inside model (a). It only makes 3 errors due to crossing brackets at “贷款十四点四

一亿元", “年增加八亿多元", and “上年增加八亿多元".
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Appendix B

Constituent Labels & Cluster Analysis
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Figure B.1: Alignment between induced and gold labels of the top-performing clusters.

We cluster the constituent inside vectors from the ground truth parse (without labels)

using the K-Means algorithm and assign each constituent with the most common label

inside its cluster. We define accuracy as the probability of correctly predicting the most

common label.
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Constituent Predicted Status
Cluster ID Label

0

NP the space shuttle Atlantis NP 3

NP Once the chief beneficiaries NP 3

PP in the offing NP 7

PP in the thrift NP 7

S the dollar was weak NP 7

SBAR If the new Cheer sells well NP 7

1

ADJP higher than most anticipated NP 7

NP more than one billion Canadian dollars 851 mil... NP 3

QP at least 600 to 700 NP 7

12

NP A. Boyd Simpson NP 3

NP Justice John Harlan NP 3

NP Robert D. Cardillo NP 3

NP James D. Awad NP 3

NP Clark S. Spalsbury Jr NP 3

NP L.J. Hooker NP 3

30

NP one ’s testimony NP 3

NP the stock market ’s plunge Friday NP 3

PP in the market ’s decline NP 7

75

ADVP two years ago ADVP 3

ADVP two weeks ago ADVP 3

PP just like two years ago ADVP 7

PP between now and two years ago ADVP 7

310

NP action on capital gains VP 7

NP the three airlines being dropped VP 7

NP news footage of the devastated South Bronx VP 7

NP the prospect of a fight with GEC for Ferranti VP 7

PP before declining again trapping more investors VP 7

S This small Dallas suburb ’s got trouble VP 7

S the earnings picture confuses VP 7

SBAR it acquired 5 % of the shares in Jaguar PLC VP 7

SBAR the market is going through another October ’87 VP 7

VP may be dubbed Eurodynamics VP 3

VP resuscitate the protagonist of his 1972 work A... VP 3

VP said after the 1987 crash VP 3

VP has a base of 100 set in 1983 VP 3

514

NP its two classes of preferred stock PP 7

NP Oil company refineries PP 7

PP to depository institutions PP 3

PP of Remic mortgage securities PP 3

PP of the preferred-share issue PP 3

PP in the patent-infringement proceedings PP 3

PP of mainframe computers PP 3

PP from mature conventional fields in western Canada PP 3

PP of its North American vehicle capacity PP 3

VP have big commodity-chemical operations PP 7

533

NP Bateman Eichler Hill Richards NP 3

NP KLM Royal Dutch Airlines NP 3

NP owners Anna and Morris Snezak NP 3

NP Mehta & Isaly NP 3

PP at Hambrecht & Quist in San Francisco NP 7

Table B.1: Investigation of phrase clusters that shows several syntactic properties.

Clearly, there are patterns surrounding identification of people/organization names,

time-related signals, quantities, etc.
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